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1. proposition: For every positive integer n, the polynomial x− y divides xn − yn.
a. Assume this proposition is true, use it to prove the following: 7 divides 12n−5n, 4 divides 5 ·7n−3n,
and 4 divides 3 · 7n + 5 · 3n.
First is a direct application of the proposition with x = 12 and y = 5. All we need to verify is that
x− y = 7.

For the second: 5 · 7n − 3n = 4 · 7n + (7n − 3n). First term is a multiple of 4, and by the proposition
the second term is also a multiple of 4, hence the sum is a multiple of 4.

For the third: 3 · 7n + 5 · 3n = 3 · 7n + 5 · 3n − 3 · 3n + 3 · 3n = 3(7n − 3n) + 8 · 3n where first term
is divisible by 4 using the proposition and the second term is a multiple of 8, hence a multiple of 4, so
the sum is a multiple of 4.
b. (Optional) Prove the proposition using induction on n. (Hint: Try to create a term with a factor
(xn − yn))
Check for n = 0, x− y divides 1− 1 = 0, which holds.
Assume true for n = k: x− y|xk − yk, which means xk − yk = (x− y) · P (x, y) for some polynomial P
in variables x and y and with integer coefficients.
For n = k + 1: xk+1 − yk+1 = x · xk − y · yk, we want to find a term with a factor (xn − yn)

= x · xk − x · yk + x · yk − y · yk

= x · (xk−yk)+x · yk − y · yk

= x · (xk−yk) + yk(x− y) = (x− y)(P (x, y) − y).

2. Prove that if gcd(a, b) = 1 and c|b then gcd(a, c) = 1. (Hint: Use proof by contradiction)
Assume the contrary: gcd(a, b) = 1 and c|b and gcd(a, c) > 1
Since gcd(a, b) = 1, b is nonzero, since c|b, we also have c is nonzero.
Let gcd(a, c) = d > 1. Then a = d · k and c = d · l.
Since c|b, we can write b = c ·m = (d · l) ·m for some integer m.
We see that d is a common divisor of a and b greater than 1, which contradicts with the original as-
sumption that gcd(a, b) = 1.

3. Given two positive integers a, b consider the set B = {m · a+n · b | m,n ∈ Z,m · a+n · b > 0}, and
let d be the smallest element in B (Why does it exist?).
Prove that d divides a. (Hint: use proof by contradiction and the division lemma)
Let d = u · a+ v · b.
Assume that d doesn’t divide a, then there is a remainder: a = q · d+ r with 0 ≤ r < d.
Solving for r, we get r = a− q · d = a− q(u · a+ v · b) = (1− qu)a+ (−qv)b which is an element of B,
but r < d which contradicts with the fact that d was the smallest element.
Remark: B is nonempty because for m = 1, n = 0 we see that a ∈ B since a itself is a positive integer.

4. (a) Let A = {k2 | k ∈ N, k > 2}. Show that x ∈ A ⇒ x|(x− 1)!. (4! = 4 · 3 · 2 · 1)
Check that k < k2 − 1 and 2k < k2 − 1 if k > 2. Therefore k and 2k are distinct factors in (k2 − 1)!.
After rearranging we see (k2 − 1)! = k · (2k) ·m where m is the product of all integers between 1 and
k2 − 1 except k and 2k.
(b) (Optional) Find the largest subet of N for which the same statement is true.
Claim: All composite numbers greater than 4.
Need to show: (1) true for composite numbers x that are not squares, and (2) false for prime numbers
x.
(1) Write x = a · b with 1 < a < b or 1 < b < a and both are less than x,
hence without loss of generality we can assume x = a · b with 1 < a < b < x − 1. (First and last
inequalities are strict because a 6= 1 since x is composite. Again a and b are distinct factors in (x− 1)!.
(2) Follows from the definition of prime numbers and Euclid’s lemma: if p divides the product
(x− 1)(x− 2) · · · 2 · 1 then it has to divide one of the factors, but all factors are less than p.



5. Euclid’s Lemma: Suppose that n, a, b ∈ N. If n|a · b and gcd(n, a) = 1 then n|b.
Use Euclid’s Lemma to prove that if a prime p divides a · b then p divides a or p divides b.
Case 1: gcd(p, a) = 1. If p divides a · b, then by Euclid’s lemma p divides b.
Case 2: gcd(p, a) > 1. In this case gcd(p, a) = p since the only number that divides p greater than 1 is
p itself. Hence p divides a.

6. (a) Use the Euclidean algorithm to compute gcd(2013, 405). Show your steps.
2013 = 4 · 405 + 393 5 · 405 = 2025 which is too much, use 4 · 405 = 1620
405 = 1 · 393 + 12
393 =? · 12+? 30 · 12 = 360, 31 · 12 = 372, 32 · 12 = 384
so
393 = 32 · 12 + 9 hence (**) 9 = 393− 32 · 12
12 = 1 · 9 + 3 hence (*) 3 = 12− 1 · 9
9 = 3 · 3 + 0 hence gcd is the previous remainder.
(b) Use the solution to part (a) to find an integer solution (X,Y ) for the equation 2013x + 405y = 15.
Is the solution unique?
15 = 5 · gcd(2013, 405), hence start to write 15 in terms of the remainders in the above computation:
15 = 5 · 3

= 5 · (12 − 1 · 9) by (*)
= 5(12 − 1 · (393 − 32 · 12)) = 5(33 · 12− 393) by (**) and combining like terms
= 5(33(405 − 1 · 393) − 393) = 5(33 · 405 − 34 · 393)
= 5(33 · 405− 34(2013 − 4 · 405)) = 5((33 + 34 · 4)405 − 34 · 2013)
= 2013(−5 · 34) + 405(5 · (33 + 34 · 4))

The solution is not unique, we can increase x by 405/3 and decrease y by 2013/3 and get a new
solution. All other solutions are obtained similarly.


