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1. Find the number N such that ∀n > N we have an inequality∣∣∣∣3n− 1
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for given ε as follows:
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(1) ε = 0.1. : N = 40, that is, for all n ≥ 40,
∣∣∣3n−1n+1 − 3

∣∣∣ < ε.

(2) ε = 0.01. : N = 400.

(3) ε = 1× 10−5. : N = 4× 105.

2. By using the formal definition of the limit of the sequence prove the following:

(1) limn→∞
(
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)
= c where c is a real number.

Proof. ∀ε > 0, ∃N = 1/ε such that ∀n > N ,∣∣∣∣(c +
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Proof. ∀ε > 0, ∃N = 1/ε2 such that ∀n > N ,∣∣∣∣ 1√
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(4) limn→∞ 3 + (−1)n+1

n = 3.

Proof. ∀ε > 0, ∃N = 1/ε such that ∀n > N ,∣∣∣∣3 +
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3. Proposition: An upper bound b of a nonempty set S ⊆ R is the supremum of S if and only if
∀ε > 0, ∃s ∈ S such that b− ε < s.

By using the proposition, prove the following statement.



Suppose that S ⊆ R is bounded above and that b ∈ R is an upper bound of S. Then b = supS if
and only if there exists a sequence (xn) of elements in S converging to b.

Proof. (⇒) Assume that b = supS. By the proposition, for any n ∈ N, ∃xn ∈ S such that

b− 1

n
< xn.

Also, since b is an upper bound of S, xn ≤ b. Thus b − 1
n < xn ≤ b < b + 1

n , which implies that
| xn − b |< 1

n . By the definition of convergence of limit, ∀ε > 0, ∃N = 1/ε such that ∀n > N ,
| xn − b |< 1

n < 1
N = ε. Therefore, the sequence (xn) converges to b as required.

(⇐) Suppose that there is a sequence (xn) in S such that limn→∞ xn = b. Then, by the definition
of convergence of limit, for any ε > 0, ∃N ∈ N such that | xN − b |< ε. So from this inequality,
we have −ε < xN − b < ε. So, in particular, we can get b − ε < xN . Then, by the proposition,
b = supS.

4. Suppose that S ⊆ R is nonempty and bounded above and let −S = {−x|x ∈ S}. Prove that
inf(−S) = − supS.

Proof. To show that −S is bounded below, let u be an upper bound of S, that is, x ≤ u for all
x ∈ S. Then, −x ≥ −u for all x ∈ S. Thus, −u is less than or equal to every element in a set
−S. Therefore, there exists a lower bound −u of −S. −S is bounded below.

Now, let’s show that inf(−S) = − sup(S). Let a ∈ R be a lower bound of −S. Then, a ≤ −x
for all x ∈ S. Then, multiplying by −1 on both sides gives x ≤ −a for all x ∈ S. Thus −a is an
upper bound of S. Since supS is a least upper bound, supS ≤ −a. So a ≤ −supS. Since a is
any arbitrary lower bound of −S and − supS is greater than or equal to a, by the definition of
infimum, − supS = inf(−S).

5. Let sn = n!/nn for all n ∈ N \ {0}. Prove that limn→∞ sn = 0.

Proof. The sequence sn can be written as a product of fractions,
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.

Note that each fraction is less than or equal to 1. So we have | sn − 0 |= sn ≤
(
1
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)
× 1n−1 =

(
1
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)
.

Therefore, ∀ε > 0, ∃N = ε−1 such that ∀n > N , | sn − 0 |< 1/n < 1/N = ε. That is, by the
definition of convergence of limit, limn→∞ sn = 0.

6. Let A and B be nonempty bounded subsets of R and let M = {a · b : a ∈ A and b ∈ B}. Prove
or disprove (provide a counterexample) that supM = (supA) · (supB).

It is not true. A countexample would be A = {x ∈ R|−2 ≤ x < 1} and B = {x ∈ R|−3 ≤ x < 1}.

7. Prove that if limn→∞ an = 1, then limn→∞(1 + an)−1 = 1/2.

Proof. Because limn→∞ an = 1, by the definition of limit, for ε > 0 there exists N1 such that for
all n > N1 | an − 1 |< ε. Also, for ε = 1, there exists N2 such that for all n > N2, | an − 1 |< ε
which implies an > 0. Thus ∀ε > 0, ∃N = max{N1, N2} such that for all n > N ,∣∣∣∣ 1
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Therefore, limn→∞(1 + an)−1 = 1/2.


