
Math 299 Midterm 2 Review Nov 4, 2013

Midterm Exam 2: Thu Nov 7, in Recitation class 5:00–6:20pm, Wells A-201.

Topics

1. Methods of proof (can be combined)

(a) Direct proof

(b) Proof by cases

(c) Proof of the contrapositive

(d) Proof by contradiction

(e) Proof by induction (also complete induction)

2. Axioms of a Group (G, ∗) (All variables below mean elements of G.)

(a) Closure: a ∗ b ∈ G.

(b) Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c)
(c) Identity: There is e with e ∗ a = a and a ∗ e = a for all a.

(d) Inverses: For each a, there is some b with a ∗ b = e and b ∗ a = e.

Extra axioms

(e) Commutativity: a ∗ b = b ∗ a.

(f) Distributivity of times over plus: a·(b + c) = a·b + a·c and (b + c)·a = b·a + c·a.

3. Divisibility of integers (All variables below mean integers.)

(a) Divisibility: a|b means b = ac for some c

(b) Properties of divisibility:

• a | b, c =⇒ a |mb+nc for all m,n

• a|b and b|c =⇒ a|c.
• a|b and b|a =⇒ a = ±b.

(c) Prime and composite

• Test: a is composite =⇒ a has prime factor p ≤
√
a.

(d) Greatest common divisor gcd(a, b); relatively prime means gcd(a, b) = 1.

(e) Division Lemma: a = qb + r with 0 ≤ r < b.

(f) Euclidean Algorithm computes remainders a > b > r1 > · · · > rk > 0.

• Computes gcd(a, b) = rk.

• Finds m,n with gcd(a, b) = ma + nb.

(g) Consequences of gcd(a, b) = ma + nb

• Find integer solutions (x, y) to equation ax + by = c.

• If e|a and e|b, then e| gcd(a, b).

• Euclid’s Lemma: If c | ab and gcd(c, a) = 1, then c|b.
• Prime Lemma: If p is prime with p | ab, then p|a or p|b.

(h) Fundamental Theorem of Arithmetic

• n > 1 is a product of primes in a unique way, except for rearranging factors.

• There is a unique list of powers s1, s2, s3, . . . ≥ 0 with: n = 2s13s25s37s411s5 · · · .



Methods of Proof: Examples

• Direct: A⇒ B. Start with hypothesis A, deduce conclusion B.

Use: Whenever you can. This is the default method.

Proposition: For integers a, b, c > 0, if a|b and a|c, then a|(b+c).

Proof: Let a|b and a|c, so b = an and c = am. Then b+ c = an+ am = a(n+m), so a|(b+c).

• Cases: (A and C)⇒ B and (A and notC)⇒ B.
Assume hypothesis A and take the case where C is true; deduce conclusion B.
Also, assume A and take the case where C is false; deduce B.

Use: When you need more information (C or notC) to get from A to B.

Proposition: For any integer n, we have n2−n even.

Proof: There is no hypothesis other than n ∈ Z. In case n is even, we have n = 2m and

n2 − n = 4m2 − 2m = 2(2m2 − m), which is even. In case n is not even (odd), we have

n = 2m + 1 and n2 − n = 4m2 + 4m + 1− 2m− 1 = 2(2m2 + m), which is also even.

• Contrapositive: not(B)⇒ not(A). Assume B is false, deduce A is false.

Use: When not(B) is a simpler or more powerful asumption than A.

Proposition: For a ∈ Z, if a2 is divisible by 3, then a is divisible by 3.

Proof: Assume the contrapositive hypothesis that n is not divisible by 3, that is n = 3k+r

with r = 1 or 2.Then n2 = 9k2 + 6kr+ r2 = 3(3k2+2kr) + r2, where r2 = 1 or r2 = 4 = 3 + 1.

In either case, n2 is not divisible by 3, which is the contrapositive conclusion.

Note: We could directly use the Prime Lemma: if p|ab, then p|a or p|b. Take p = 3, b = a.

• Contradiction: (A and notB)⇒ (C and notC).
Assume A ⇒ B is false, meaning A is true and B is false. Deduce a contradiction,
the impossible statement that C is both true and false.

Use: As last resort. You can’t see why it’s true, so you prove it can’t be false.

Proposition:
√

3 is irrational.
Proof: There is no hypothesis A, so we assume only not(B):

√
3 is rational, meaning

√
3 = a

b ,

a fraction in lowest terms. Then 3 = a2

b2 and a2 = 3b2. Thus a2 is divisible by 3, and the Prime
Lemma implies a is dvisible by 3, so that a = 3m. Hence 9m2 = a2 = 3b2, and 3m2 = b2,
so b2 is divisible by 3, which implies b is divisible by 3. However, since a

b is in lowest terms
and a is divisible by 3, we must have b not divisible by 3 (otherwise the fraction could be
reduced). That is, b is both divisible by 3 and not divisible by 3. This contradiction shows
that our beginning assumption was false, and the Proposition is true.

To summarize: if you give me a fraction with a
b =
√

3, then I can produce an integer b which

is both divisible and not divisible by 3.

• Mathematical Induction: To prove A(n) for all integers n ≥ b:
Anchor (Base Case) A(b); and Chain Step: for each n ≥ b, A(n)⇒A(n+1).

Use: When the statement A(n) depends on an integer n, and A(n) is part of A(n+1).

Proposition: For all integers n ≥ 1, we have 1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1.

Proof: Anchor A(1) says: 1 = 21 − 1, which is true.

Chain: For some n ≥ 1, assume the inductive hypothesis A(n): 1+2+22+ · · ·+2n−1 = 2n−1.

Then 1 + 2 + 22 + · · ·+ 2n−1 + 2n = (2n − 1) + 2n by the indctive hypothesis, which equals:

2(2n) − 1 = 2n+1 − 1. That is, we have A(n+1): 1 + 2 + 22 + · · · + 2n = 2n+1 − 1, which is

the inductive conclusion.

Final conclusion: A(n) is true for all n ≥ 1.



Problems

1. Relatively prime integers

(a) Prove: For a, b ∈ Z, gcd(a, b) = 1 ⇐⇒ na + mb = 1 for some n,m ∈ Z.

(b) Prove: For a, b, c ∈ Z, if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

2. Suppose a positive integer n has the property: n | ab⇒ n|a or n|b. Then n is prime.

3. Recall the Fibonacci numbers F1 = F2 = 1, and Fn+1 = Fn−1 + Fn for n ≥ 2.
Prove that for all n ∈ N, we have F1 + F2 + · · ·+ Fn = Fn+2 − 1.

4. For positive integers a, b, c, d, if ab - cd, then a - c or b - d.

5. Let x be an irrational real number. Prove that either x2 or x3 is irrational.

6. prop: For any n ∈ N, at least one of the numbers n, n+1, n+2, n+3 is divisible by 4.

(a) Use induction to prove the Proposition.

(b) Use the Division Lemma to prove the Proposition.

7. Prove: Let a1 = 1 and an+1 = 1
2an + 1 for n ≥ 1. Then an < 2 for all n.

8. Prove: Let p, q be distinct primes. Then logp(q) is irrational.

9. We get a commutative group from the real numbers R with the addition operation,
and also from the non-zero reals R \ {0} with the multiplication operation. Also,
multiplication distributes over addition.

Give a fully detailed proof of the formula (a+b)2 = a2+2ab+b2 for a, b ∈ R, referring
to the necessary axiom at each step.

10. Prove that 101 is prime.

11. Find all integer solutions (x, y) to the equation 5x + 13y = 1.



Solutions

1a. prop: For a, b ∈ Z, we have gcd(a, b) = 1 if and only if na+mb = 1 for some n,m ∈ Z.

Proof: (=⇒) Direct proof. If gcd(a, b) = 1, the we know that the Euclidean Algorithm
allows us to write na + mb = gcd(a, b) = 1 for m,n ∈ Z.

(⇐=) Direct proof. Assume na + mb = gcd(a, b) = 1 for m,n ∈ Z. For any positive
common divisor c | a, b, we have c |na+mb = 1, so c = 1. Thus, the greatest common divisor
gcd(a, b) = 1.

1b. prop: For a, b, c ∈ Z, if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

First Proof: Direct proof from previous results. Assume gcd(a, b) = gcd(a, c) = 1. By the
Euclidean Algorithm, we can write ma + nb = 1 and qa + rc = 1, so that:

(1)(1) = (ma + nb)(qa + rc)
= (ma)(qa) + (nb)(qa) + (ma)(rc) + (nb)(rc)
= (maq + nbq + mrc)a + (nr)(bc).

That is, ka + `(bc) = 1 for k, ` ∈ Z, so Proposition 1(a) above gives gcd(a, bc) = 1.

Second Proof. Contrapositive. Assume the contrapositive hypothesis: d = gcd(a, bc) > 1.
Then d has a prime factor p|d, with p|a and p|bc. By the Prime Lemma, this means p|b, so
that gcd(a, b) ≥ p > 1; or p|c, so that gcd(a, c) ≥ p > 1. In either case, gcd(a, b) > 1 or
gcd(a, c) > 1, which is the contrapositive conclusion.

2. prop: Let n be a positive integer such that n|ab⇒ n|a or n|b. Then n is prime.

Proof: The conclusion that n is prime is basically negative: n does not have a factorization.
Thus, the contrapositive will be simpler to work with. The contrapositive hypothesis is that
n is composite: n = ab with 1 < a, b < n. This gives some a, b with n | ab, but n - a and n - b.
This is precisely the contrapositive conclusion, the negation of ∀a, b : n | ab ⇒ n|a or n|b.

3. prop: The Fibonacci numbers Fn satisfy: F1 + F2 + · · ·+ Fn = Fn+2 − 1.

Proof. Induction. Let A(n) be the formula for a given n ≥ 1.
Base: F1 = 1 = 2− 1 = F3 − 1, so A(1) is true.
Chain. Assume A(n): F1 + F2 + · · ·+ Fn = Fn+2 − 1 for some n ≥ 1. Then:

F1 + F2 + · · ·+ Fn + Fn+1 = (Fn+2 − 1) + Fn+1 by inductive hypothesis
= Fn+2 + Fn+1 − 1 = Fn+3 − 1 by recurrence for Fn+3

which gives the inductive conclusion A(n+1).

4. prop: For positive integers a, b, c, d, if ab - cd, then a - c or b - d.

Proof. Contrapositive. Assume the contrapositive hypothesis a|c and b|d. Then c = na and
d = mb, so that cd = nmab. This gives the contrapositive conclusion ab | cd.

5. Let x be an irrational real number. Prove that either x2 or x3 is irrational.

Proof. Contrapositive. Assume the contrapositive hypothesis: x2 and x3 are rational. If
x = 0, then x is rational. Otherwise, x 6= 0, and the quotient of two rational numbers is
rational, so x = x2/x3 is again rational. This is the contrapositive conclusion.



6. prop: For any n ∈ N, at least one of the numbers n, n+1, n+2, n+3 is divisible by 4.

a. Proof. Induction with cases. Base: Among 0,1,2,3, we have 0 divisible by 4.
Chain Step: Inductively assume 4 divides one of the numbers n, n+1, n+2, n+3. We

wish to conclude that 4 divides one of the numbers n+1, n+2, n+3, n+4.
Case 1: If 4 divides one of n+1, n+2, n+3, then the conclusion holds. Case 2: If 4

divides n, then n = 4k and n+4 = 4(k+1) is divisible by 4, and the conclusion again holds.

b. Proof. Cases. Write n = 4q + r for some 0 ≤ r < 4. Case 1: In case r = 0, then
n = 4q, and n+4 = 4(q+1) is divisible by 4. In case r > 0, let k = 4− r ∈ {1, 2, 3}. Then
n+k = 4q+ 4 = 4(q+1) is divisible by 4, and n+ k is one of n+1, n+2, n+3. In either case,
one of n, n+1, n+2, n+3 is divisible by 4.

7. prop: Let a1 = 1 and an+1 = 1
2an + 1 for n ≥ 1. Then an < 2 for all n.

a. Proof. Induction. Base: a1 = 1 < 2. Chain: Assume an < 2 for some n. Then
an+1 = 1

2an + 1 < 1
2(2) + 1 = 2. That is, an+1 < 2.

8. prop: Let p, q be distinct primes. Then logp(q) is irrational.

Proof. Contradiction. Assume that logp(q) is rational, meaning logp(q) = a/b for integers

a, b. We may assume a, b > 0 since the prime q > 1, so logp(q) > 0. Then plogp(q) = pa/b,

so q = pa/b, and qb = pa. By the Fundamental Theorem of Arithmetic, any integer has
a unique factorization into primes, so it is not possible for qa to be factored as pb for a
different prime p (remember a, b > 0). This contradiction proves our original assumption
was false, meaning logp(q) is irrational.

9. prop: For any a, b ∈ R, we have (a + b)2 = a2 + 2ab + b2

Proof. Direct proof. Note that x2 means x·x and 2 means 1+1.

(a + b)·(a + b) = (a + b)·a + (a + b)·b by distributivity

= a·a + b·a + a·b + b·b by distributivity

= a·a + a·b + a·b + b·b by multiplicative commutativity

= a·a + 1·a·b + 1·a·b + b·b by multiplicative identity

= a·a + (1+1)·a·b + b·b by distributivity

= a2 + 2·a·b + b2 by definition.

Also, we have used additive associativity throughout, which allows us to write expressions
like w + x + y + z without specifying which addition is done first, as in ((x + y) + z) + w
or (w + (x + y)) + z.

10. prop: 101 is a prime number.

Proof. We know that if n is composite, then n has a prime factor p ≤
√
n. Contrapositively,

if n has no prime factor p ≤
√
n, then n is prime. Now, n = 101 is not divisible by

p = 2, 3, 5, or 7, since 101
2 = 501

2 , 101
3 = 332

3 , 101
5 = 201

5 , 101
7 = 143

7 . These are all the

primes p ≤
√

101 ∼= 10.05, so 101 is prime.

11. To find all integer solutions to 5x+ 13y = 1, we first perform the Euclidean Algorithm
on a = 13 and b = 5 (top-to-bottom), then perform back-substitution to get a particular
solution to 5x + 13y = gcd(5, 13) (bottom-to-top):

13 = 2(5) + 3 1 = −1(5) + 2(13− 2(5)) = 2(13)− 5(5)

5 = 1(3) + 2 1 = 1(3)− 1(5− 3) = −1(5) + 2(3)

3 = 1(2) + 1 1 = 3− 1(2) = 1(3)− 1(2)

2 = 2(1) + 0 1 = gcd(13, 5)

Now from the particular solution (2,−5), we get the general solution in terms of d =
gcd(5, 13) = 1: namely (x, y) = (2 + 13

d n,−5− 5
dm) = (2 + 13n,−5− 5m) for all n,m ∈ Z.


