Midterm 2 Review

Midterm Exam 2: Thu Nov 7, in Recitation class 5:00–6:20pm, Wells A-201.

Topics

- 1. Methods of proof (can be combined)
 - (a) Direct proof
 - (b) Proof by cases
 - (c) Proof of the contrapositive
 - (d) Proof by contradiction
 - (e) Proof by induction (also complete induction)
- 2. Axioms of a Group (G, *) (All variables below mean elements of G.)
 - (a) Closure: $a * b \in G$.
 - (b) Associativity: (a * b) * c = a * (b * c)
 - (c) Identity: There is e with e * a = a and a * e = a for all a.
 - (d) Inverses: For each a, there is some b with a * b = e and b * a = e.

Extra axioms

- (e) Commutativity: a * b = b * a.
- (f) Distributivity of times over plus: $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.
- 3. Divisibility of integers (All variables below mean integers.)
 - (a) Divisibility: a|b means b = ac for some c
 - (b) Properties of divisibility:
 - $a \mid b, c \implies a \mid mb + nc$ for all m, n
 - a|b and $b|c \implies a|c$.
 - $a|b \text{ and } b|a \implies a = \pm b.$
 - (c) Prime and composite
 - Test: a is composite $\implies a$ has prime factor $p \leq \sqrt{a}$.
 - (d) Greatest common divisor gcd(a, b); relatively prime means gcd(a, b) = 1.
 - (e) Division Lemma: a = qb + r with $0 \le r < b$.
 - (f) Euclidean Algorithm computes remainders $a > b > r_1 > \cdots > r_k > 0$.
 - Computes $gcd(a, b) = r_k$.
 - Finds m, n with gcd(a, b) = ma + nb.
 - (g) Consequences of gcd(a, b) = ma + nb
 - Find integer solutions (x, y) to equation ax + by = c.
 - If e|a and e|b, then $e|\operatorname{gcd}(a,b)$.
 - Euclid's Lemma: If $c \mid ab$ and gcd(c, a) = 1, then $c \mid b$.
 - Prime Lemma: If p is prime with $p \mid ab$, then $p \mid a$ or $p \mid b$.
 - (h) Fundamental Theorem of Arithmetic
 - n > 1 is a product of primes in a unique way, except for rearranging factors.
 - There is a unique list of powers $s_1, s_2, s_3, \ldots \ge 0$ with: $n = 2^{s_1} 3^{s_2} 5^{s_3} 7^{s_4} 11^{s_5} \cdots$.

Methods of Proof: Examples

- Direct: A ⇒ B. Start with hypothesis A, deduce conclusion B. Use: Whenever you can. This is the default method. Proposition: For integers a, b, c > 0, if a|b and a|c, then a|(b+c). Proof: Let a|b and a|c, so b = an and c = am. Then b + c = an + am = a(n+m), so a|(b+c).
- Cases: $(A \text{ and } C) \Rightarrow B$ and $(A \text{ and not } C) \Rightarrow B$. Assume hypothesis A and take the case where C is true; deduce conclusion B. Also, assume A and take the case where C is false; deduce B.

Use: When you need more information (C or not C) to get from A to B.

Proposition: For any integer n, we have $n^2 - n$ even.

Proof: There is no hypothesis other than $n \in \mathbb{Z}$. In case n is even, we have n = 2m and $n^2 - n = 4m^2 - 2m = 2(2m^2 - m)$, which is even. In case n is not even (odd), we have n = 2m + 1 and $n^2 - n = 4m^2 + 4m + 1 - 2m - 1 = 2(2m^2 + m)$, which is also even.

• Contrapositive: $not(B) \Rightarrow not(A)$. Assume B is false, deduce A is false.

Use: When not(B) is a simpler or more powerful asymption than A.

Proposition: For $a \in \mathbb{Z}$, if a^2 is divisible by 3, then a is divisible by 3.

Proof: Assume the contrapositive hypothesis that n is not divisible by 3, that is n = 3k+r with r = 1 or 2. Then $n^2 = 9k^2 + 6kr + r^2 = 3(3k^2+2kr) + r^2$, where $r^2 = 1$ or $r^2 = 4 = 3+1$. In either case, n^2 is not divisible by 3, which is the contrapositive conclusion.

Note: We could directly use the Prime Lemma: if p|ab, then p|a or p|b. Take p = 3, b = a.

• Contradiction: $(A \text{ and } \text{not } B) \Rightarrow (C \text{ and } \text{not } C)$. Assume $A \Rightarrow B$ is false, meaning A is true and B is false. Deduce a contradiction, the impossible statement that C is both true and false.

Use: As last resort. You can't see why it's true, so you prove it can't be false.

Proposition: $\sqrt{3}$ is irrational.

Proof: There is no hypothesis A, so we assume only $\operatorname{not}(B)$: $\sqrt{3}$ is rational, meaning $\sqrt{3} = \frac{a}{b}$, a fraction in lowest terms. Then $3 = \frac{a^2}{b^2}$ and $a^2 = 3b^2$. Thus a^2 is divisible by 3, and the Prime Lemma implies a is divisible by 3, so that a = 3m. Hence $9m^2 = a^2 = 3b^2$, and $3m^2 = b^2$, so b^2 is divisible by 3, which implies b is divisible by 3. However, since $\frac{a}{b}$ is in lowest terms and a is divisible by 3, we must have b not divisible by 3 (otherwise the fraction could be reduced). That is, b is both divisible by 3 and not divisible by 3. This contradiction shows that our beginning assumption was false, and the Proposition is true.

To summarize: if you give me a fraction with $\frac{a}{b} = \sqrt{3}$, then I can produce an integer b which is both divisible and not divisible by 3.

• Mathematical Induction: To prove A(n) for all integers $n \ge b$: Anchor (Base Case) A(b); and Chain Step: for each $n \ge b$, $A(n) \Rightarrow A(n+1)$.

Use: When the statement A(n) depends on an integer n, and A(n) is part of A(n+1).

Proposition: For all integers $n \ge 1$, we have $1 + 2 + 2^2 + \dots + 2^{n-1} = 2^n - 1$.

Proof: Anchor A(1) says: $1 = 2^1 - 1$, which is true.

Chain: For some $n \ge 1$, assume the inductive hypothesis $A(n): 1+2+2^2+\cdots+2^{n-1}=2^n-1$. Then $1+2+2^2+\cdots+2^{n-1}+2^n=(2^n-1)+2^n$ by the inductive hypothesis, which equals: $2(2^n) - 1 = 2^{n+1} - 1$. That is, we have $A(n+1): 1+2+2^2+\cdots+2^n = 2^{n+1} - 1$, which is the inductive conclusion.

Final conclusion: A(n) is true for all $n \ge 1$.

Problems

- 1. Relatively prime integers
 - (a) Prove: For $a, b \in \mathbb{Z}$, $gcd(a, b) = 1 \iff na + mb = 1$ for some $n, m \in \mathbb{Z}$.
 - (b) Prove: For $a, b, c \in \mathbb{Z}$, if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.
- 2. Suppose a positive integer n has the property: $n \mid ab \Rightarrow n \mid a \text{ or } n \mid b$. Then n is prime.
- 3. Recall the Fibonacci numbers $F_1 = F_2 = 1$, and $F_{n+1} = F_{n-1} + F_n$ for $n \ge 2$. Prove that for all $n \in \mathbb{N}$, we have $F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$.
- 4. For positive integers a, b, c, d, if $ab \nmid cd$, then $a \nmid c$ or $b \nmid d$.
- 5. Let x be an irrational real number. Prove that either x^2 or x^3 is irrational.
- 6. PROP: For any $n \in \mathbb{N}$, at least one of the numbers n, n+1, n+2, n+3 is divisible by 4.
 - (a) Use induction to prove the Proposition.
 - (b) Use the Division Lemma to prove the Proposition.
- 7. Prove: Let $a_1 = 1$ and $a_{n+1} = \frac{1}{2}a_n + 1$ for $n \ge 1$. Then $a_n < 2$ for all n.
- 8. Prove: Let p, q be distinct primes. Then $\log_p(q)$ is irrational.
- 9. We get a commutative group from the real numbers \mathbb{R} with the addition operation, and also from the non-zero reals $\mathbb{R} \setminus \{0\}$ with the multiplication operation. Also, multiplication distributes over addition.

Give a fully detailed proof of the formula $(a+b)^2 = a^2 + 2ab + b^2$ for $a, b \in \mathbb{R}$, referring to the necessary axiom at each step.

- 10. Prove that 101 is prime.
- 11. Find all integer solutions (x, y) to the equation 5x + 13y = 1.

Solutions

1a. PROP: For $a, b \in \mathbb{Z}$, we have gcd(a, b) = 1 if and only if na + mb = 1 for some $n, m \in \mathbb{Z}$. *Proof:* (\Longrightarrow) Direct proof. If gcd(a, b) = 1, the we know that the Euclidean Algorithm allows us to write na + mb = gcd(a, b) = 1 for $m, n \in \mathbb{Z}$.

(\Leftarrow) Direct proof. Assume $na + mb = \frac{\text{ged}(a,b)}{\text{ged}(a,b)} = 1$ for $m, n \in \mathbb{Z}$. For any positive common divisor $c \mid a, b$, we have $c \mid na+mb = 1$, so c = 1. Thus, the greatest common divisor gcd(a, b) = 1.

1b. PROP: For $a, b, c \in \mathbb{Z}$, if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1. *First Proof:* Direct proof from previous results. Assume gcd(a, b) = gcd(a, c) = 1. By the Euclidean Algorithm, we can write ma + nb = 1 and qa + rc = 1, so that:

$$\begin{aligned} (1)(1) &= (ma+nb)(qa+rc) \\ &= (ma)(qa) + (nb)(qa) + (ma)(rc) + (nb)(rc) \\ &= (maq+nbq+mrc)a + (nr)(bc). \end{aligned}$$

That is, $ka + \ell(bc) = 1$ for $k, \ell \in \mathbb{Z}$, so Proposition 1(a) above gives gcd(a, bc) = 1.

Second Proof. Contrapositive. Assume the contrapositive hypothesis: d = gcd(a, bc) > 1. Then d has a prime factor p|d, with p|a and p|bc. By the Prime Lemma, this means p|b, so that $\text{gcd}(a,b) \ge p > 1$; or p|c, so that $\text{gcd}(a,c) \ge p > 1$. In either case, gcd(a,b) > 1 or gcd(a,c) > 1, which is the contrapositive conclusion.

2. PROP: Let n be a positive integer such that $n|ab \Rightarrow n|a$ or n|b. Then n is prime.

Proof: The conclusion that n is prime is basically negative: n does not have a factorization. Thus, the contrapositive will be simpler to work with. The contrapositive hypothesis is that n is composite: n = ab with 1 < a, b < n. This gives some a, b with $n \mid ab$, but $n \nmid a$ and $n \nmid b$. This is precisely the contrapositive conclusion, the negation of $\forall a, b : n \mid ab \Rightarrow n \mid a$ or $n \mid b$.

3. PROP: The Fibonacci numbers F_n satisfy: $F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$.

Proof. Induction. Let A(n) be the formula for a given $n \ge 1$.

Base: $F_1 = 1 = 2 - 1 = F_3 - 1$, so A(1) is true.

Chain. Assume A(n): $F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$ for some $n \ge 1$. Then:

$$F_1 + F_2 + \dots + F_n + F_{n+1} = (F_{n+2} - 1) + F_{n+1}$$
 by inductive hypothesis
= $F_{n+2} + F_{n+1} - 1 = F_{n+3} - 1$ by recurrence for F_{n+3}

which gives the inductive conclusion A(n+1).

4. PROP: For positive integers a, b, c, d, if $ab \nmid cd$, then $a \nmid c$ or $b \nmid d$.

Proof. Contrapositive. Assume the contrapositive hypothesis a|c and b|d. Then c = na and d = mb, so that cd = nmab. This gives the contrapositive conclusion ab | cd.

5. Let x be an irrational real number. Prove that either x^2 or x^3 is irrational.

Proof. Contrapositive. Assume the contrapositive hypothesis: x^2 and x^3 are rational. If x = 0, then x is rational. Otherwise, $x \neq 0$, and the quotient of two rational numbers is rational, so $x = x^2/x^3$ is again rational. This is the contrapositive conclusion.

6. PROP: For any $n \in \mathbb{N}$, at least one of the numbers n, n+1, n+2, n+3 is divisible by 4.

a. *Proof.* Induction with cases. Base: Among 0,1,2,3, we have 0 divisible by 4.

Chain Step: Inductively assume 4 divides one of the numbers n, n+1, n+2, n+3. We wish to conclude that 4 divides one of the numbers n+1, n+2, n+3, n+4.

Case 1: If 4 divides one of n+1, n+2, n+3, then the conclusion holds. Case 2: If 4 divides n, then n = 4k and n+4 = 4(k+1) is divisible by 4, and the conclusion again holds. **b.** *Proof.* Cases. Write n = 4q + r for some $0 \le r < 4$. Case 1: In case r = 0, then n = 4q, and n+4 = 4(q+1) is divisible by 4. In case r > 0, let $k = 4 - r \in \{1, 2, 3\}$. Then n+k = 4q+4 = 4(q+1) is divisible by 4, and n+k is one of n+1, n+2, n+3. In either case, one of n, n+1, n+2, n+3 is divisible by 4.

7. PROP: Let $a_1 = 1$ and $a_{n+1} = \frac{1}{2}a_n + 1$ for $n \ge 1$. Then $a_n < 2$ for all n.

a. *Proof.* Induction. Base: $a_1 = 1 < 2$. Chain: Assume $a_n < 2$ for some *n*. Then $a_{n+1} = \frac{1}{2}a_n + 1 < \frac{1}{2}(2) + 1 = 2$. That is, $a_{n+1} < 2$.

8. PROP: Let p, q be distinct primes. Then $\log_p(q)$ is irrational.

Proof. Contradiction. Assume that $\log_p(q)$ is rational, meaning $\log_p(q) = a/b$ for integers a, b. We may assume a, b > 0 since the prime q > 1, so $\log_p(q) > 0$. Then $p^{\log_p(q)} = p^{a/b}$, so $q = p^{a/b}$, and $q^b = p^a$. By the Fundamental Theorem of Arithmetic, any integer has a unique factorization into primes, so it is not possible for q^a to be factored as p^b for a different prime p (remember a, b > 0). This contradiction proves our original assumption was false, meaning $\log_p(q)$ is irrational.

9. PROP: For any $a, b \in \mathbb{R}$, we have $(a + b)^2 = a^2 + 2ab + b^2$ *Proof.* Direct proof. Note that x^2 means $x \cdot x$ and 2 means 1+1.

Also, we have used additive associativity throughout, which allows us to write expressions like w + x + y + z without specifying which addition is done first, as in ((x + y) + z) + w or (w + (x + y)) + z.

10. PROP: 101 is a prime number.

Proof. We know that if n is composite, then n has a prime factor $p \leq \sqrt{n}$. Contrapositively, if n has no prime factor $p \leq \sqrt{n}$, then n is prime. Now, n = 101 is not divisible by p = 2, 3, 5, or 7, since $\frac{101}{2} = 50\frac{1}{2}$, $\frac{101}{3} = 33\frac{2}{3}$, $\frac{101}{5} = 20\frac{1}{5}$, $\frac{101}{7} = 14\frac{3}{7}$. These are all the primes $p \leq \sqrt{101} \approx 10.05$, so 101 is prime.

11. To find all integer solutions to 5x + 13y = 1, we first perform the Euclidean Algorithm on a = 13 and b = 5 (top-to-bottom), then perform back-substitution to get a particular solution to 5x + 13y = gcd(5, 13) (bottom-to-top):

$$13 = 2(5) + 3 1 = -1(5) + 2(13 - 2(5)) = 2(13) - 5(5)$$

$$5 = 1(3) + 2 1 = 1(3) - 1(5 - 3) = -1(5) + 2(3)$$

$$3 = 1(2) + 1 1 = 3 - 1(2) = 1(3) - 1(2)$$

$$2 = 2(1) + 0 1 = \gcd(13, 5)$$

Now from the particular solution (2, -5), we get the general solution in terms of $d = \gcd(5, 13) = 1$: namely $(x, y) = (2 + \frac{13}{d}n, -5 - \frac{5}{d}m) = (2 + 13n, -5 - 5m)$ for all $n, m \in \mathbb{Z}$.