Math 299 Midterm 2 Review Nov 4, 2013
Midterm Exam 2: Thu Nov 7, in Recitation class 5:00-6:20pm, Wells A-201.
Topics

1. Methods of proof (can be combined)

(a) Direct proof
(b) Proof by cases
(¢) Proof of the contrapositive
(d) Proof by contradiction

)

(e) Proof by induction (also complete induction)

2. Axioms of a Group (G, *) (All variables below mean elements of G.)

Closure: axb € G.

(a)
(b)
()

)

(d) Inverses: For each a, there is some b with a *b = e and bxa = e.

Associativity: (a*b) xc=ax* (bx*c)

Identity: There is e with e *x a = a and a * e = a for all a.

Extra axioms

(e) Commutativity: a*b="0bxa.

(f) Distributivity of times over plus: a-(b+ ¢) = a:b+ a-c and (b+ ¢)-a = b-a + c-a.
3. Divisibility of integers (All variables below mean integers.)

(a) Divisibility: a|b means b = ac for some ¢
(b) Properties of divisibility:

e alb,c = a|mb+nc for all m,n

e alb and bjc = alc.

e alb and bla = a = =+b.

(c) Prime and composite
e Test: a is composite => a has prime factor p < /a.
(d) Greatest common divisor ged(a,b); relatively prime means ged(a,b) = 1.
(e) Division Lemma: a = gb+ r with 0 < r < b.
(f) Euclidean Algorithm computes remainders a > b > r; > -+ > 1, > 0.
e Computes ged(a,b) = rg.
e Finds m,n with ged(a,b) = ma + nb.
(g) Consequences of ged(a,b) = ma + nb
e Find integer solutions (z,y) to equation azx + by = c.
If e|a and el|b, then e| ged(a, b).
e Euclid’s Lemma: If ¢|ab and ged(c,a) = 1, then c|b.
e Prime Lemma: If p is prime with p|ab, then p|a or p|b.

(h) Fundamental Theorem of Arithmetic

e n > 1 is a product of primes in a unique way, except for rearranging factors.

e There is a unique list of powers s1, s, 83, ... > 0 with: n = 2513%25%37541155 ...,



Methods of Proof: Examples

e Direct: A = B. Start with hypothesis A, deduce conclusion B.
Use: Whenever you can. This is the default method.

Proposition: For integers a,b, ¢ > 0, if a|b and a|c, then a|(b+c).
Proof: Let a|b and a|c, so b = an and ¢ = am. Then b+ ¢ = an+ am = a(n+m), so a|(b+c).

o Cases: (Aand C)= B and (A and notC) = B.
Assume hypothesis A and take the case where C' is true; deduce conclusion B.
Also, assume A and take the case where C' is false; deduce B.

Use: When you need more information (C' or not C') to get from A to B.

Proposition: For any integer n, we have n?>—n even.

Proof: There is no hypothesis other than n € Z. In case n is even, we have n = 2m and
n? —n = 4m? — 2m = 2(2m? — m), which is even. In case n is not even (odd), we have
n=2m+1and n? —n=4m? +4m+1—2m — 1 = 2(2m? + m), which is also even.

e Contrapositive: not(B) = not(A). Assume B is false, deduce A is false.
Use: When not(B) is a simpler or more powerful asumption than A.
Proposition: For a € Z, if a? is divisible by 3, then a is divisible by 3.
Proof: Assume the contrapositive hypothesis that n is not divisible by 3, that is n = 3k+r
with r = 1 or 2.Then n? = 9k? + 6kr +r? = 3(3k*+2kr) +7r2, where r> = lor r> =4 =3+ 1.
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In either case, n® is not divisible by 3, which is the contrapositive conclusion.

Note: We could directly use the Prime Lemma: if p|ab, then pla or p|b. Take p =3, b= a.

e Contradiction: (A and not B) = (C and not C).
Assume A = B is false, meaning A is true and B is false. Deduce a contradiction,
the impossible statement that C' is both true and false.

Use: As last resort. You can’t see why it’s true, so you prove it can’t be false.
Proposition: /3 is irrational.
Proof: There is no hypothesis A, so we assume only not(B): v/3 is rational, meaning v/3 = 7

a fraction in lowest terms. Then 3 = ‘;—j and a? = 3b%. Thus a? is divisible by 3, and the Prime

Lemma implies a is dvisible by 3, so that a = 3m. Hence 9m? = a? = 3b?, and 3m? = b2,

so b? is divisible by 3, which implies b is divisible by 3. However, since ¢ is in lowest terms

and a is divisible by 3, we must have b not divisible by 3 (otherwise the fraction could be
reduced). That is, b is both divisible by 3 and not divisible by 3. This contradiction shows
that our beginning assumption was false, and the Proposition is true.

To summarize: if you give me a fraction with § = /3, then I can produce an integer b which
is both divisible and not divisible by 3.

e Mathematical Induction: To prove A(n) for all integers n > b:
Anchor (Base Case) A(b); and Chain Step: for each n > b, A(n)= A(n+1).

Use: When the statement A(n) depends on an integer n, and A(n) is part of A(n+1).

Proposition: For all integers n > 1, we have 1 +2 422 +... 4271 =27 _ 1,

Proof: Anchor A(1) says: 1 = 2! — 1, which is true.

Chain: For some n > 1, assume the inductive hypothesis A(n): 1+2+22+... 42771 =271,
Then 142+ 22+ ... 4+ 2771 4 27 = (2" — 1) + 2" by the indctive hypothesis, which equals:
2(2") — 1 =271 — 1. That is, we have A(n+1): 14+2+ 2%+ ... 42" = 2" — 1 which is
the inductive conclusion.

Final conclusion: A(n) is true for all n > 1.



10.
11.

Problems

. Relatively prime integers

(a) Prove: For a,b € Z, ged(a,b) =1 <= na+mb=1 for some n,m € Z.
(b) Prove: For a,b,c € Z, if ged(a,b) = 1 and ged(a, ¢) = 1, then ged(a, be) = 1.

. Suppose a positive integer n has the property: n|ab = n|a or n|b. Then n is prime.

Recall the Fibonacci numbers F; = F» =1, and F,11 = F,_1 + F,, for n > 2.
Prove that for all n € N, we have I} + Fo + -+ F,, = Fj,49 — 1.

For positive integers a, b, ¢, d, if ab{ cd, then a{c or bt d.

3

Let x be an irrational real number. Prove that either 22 or 23 is irrational.

PROP: For any n € N, at least one of the numbers n,n+1,n+2,n+3 is divisible by 4.

(a) Use induction to prove the Proposition.

(b) Use the Division Lemma to prove the Proposition.
Prove: Let a1 =1 and an41 = %an + 1 for n > 1. Then a,, < 2 for all n.
Prove: Let p,q be distinct primes. Then log,(g) is irrational.

We get a commutative group from the real numbers R with the addition operation,
and also from the non-zero reals R \ {0} with the multiplication operation. Also,
multiplication distributes over addition.

Give a fully detailed proof of the formula (a+b)? = a?+2ab+b? for a,b € R, referring
to the necessary axiom at each step.

Prove that 101 is prime.

Find all integer solutions (z,y) to the equation 5z + 13y = 1.



Solutions

la. prOP: For a,b € Z, we have ged(a, b) = 1 if and only if na+mb = 1 for some n,m € Z.
Proof: (=) Direct proof. If ged(a,b) = 1, the we know that the Euclidean Algorithm
allows us to write na + mb = ged(a,b) =1 for m,n € Z.

(<=) Direct proof. Assume na + mb = ged{asb)} = 1 for m,n € Z. For any positive
common divisor ¢ | a, b, we have c¢|na+mb = 1, so ¢ = 1. Thus, the greatest common divisor
ged(a,b) = 1.
1b. proOP: For a,b,c € Z, if ged(a,b) = 1 and ged(a, ¢) = 1, then ged(a, be) = 1.

First Proof: Direct proof from previous results. Assume ged(a,b) = ged(a,c) = 1. By the
Euclidean Algorithm, we can write ma + nb =1 and ga + rc = 1, so that:

(1)(1) = (ma+nb)(qa+ rc)
= (ma)(qa) + (nb)(qa) + (ma)(rc) + (nb)(rc)
= (magq + nbq + mrc)a + (nr)(be).

That is, ka + £(bc) = 1 for k, ¢ € Z, so Proposition 1(a) above gives gcd(a, be) = 1.

Second Proof. Contrapositive. Assume the contrapositive hypothesis: d = ged(a, bc) > 1.
Then d has a prime factor p|d, with p|a and p|be. By the Prime Lemma, this means p|b, so
that ged(a,b) > p > 1; or p|c, so that ged(a,c¢) > p > 1. In either case, ged(a,b) > 1 or
ged(a, ¢) > 1, which is the contrapositive conclusion.

2. PROP: Let n be a positive integer such that n|ab = n|a or n|b. Then n is prime.

Proof: The conclusion that n is prime is basically negative: n does not have a factorization.
Thus, the contrapositive will be simpler to work with. The contrapositive hypothesis is that

n is composite: n = ab with 1 < a,b < n. This gives some a,b with n | ab, but n { a and n 1 b.
This is precisely the contrapositive conclusion, the negation of Va,b: n|ab = n|a or n|b.

3. PROP: The Fibonacci numbers F), satisfy: Fy + Fo+ -+ F, = F,10 — 1.
Proof. Induction. Let A(n) be the formula for a given n > 1.

Base: F1 =1=2—1= F3—1,s0 A(1) is true.

Chain. Assume A(n): Fy + Fo+--- 4+ F,, = F,42 — 1 for some n > 1. Then:

Fi+F+- -+ F,+Fop1 = (Fapo—1)+Fo by inductive hypothesis
= Fyyo+ Fhy1 —1=F,:3—1 by recurrence for Fj, 13

which gives the inductive conclusion A(n+1).

4. prOP: For positive integers a, b, ¢, d, if abt cd, then a{c or b1t d.
Proof. Contrapositive. Assume the contrapositive hypothesis a|c and b|d. Then ¢ = na and
d = mb, so that ed = nmab. This gives the contrapositive conclusion ab | cd.
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5. Let z be an irrational real number. Prove that either 2 or z? is irrational.

Proof. Contrapositive. Assume the contrapositive hypothesis: z? and 2 are rational. If
x = 0, then x is rational. Otherwise, x # 0, and the quotient of two rational numbers is
rational, so x = x2/2? is again rational. This is the contrapositive conclusion.



6. PROP: For any n € N, at least one of the numbers n,n+1, n+2,n+3 is divisible by 4.

a. Proof. Induction with cases. Base: Among 0,1,2,3, we have 0 divisible by 4.

Chain Step: Inductively assume 4 divides one of the numbers n,n+1,n+2,n+3. We
wish to conclude that 4 divides one of the numbers n+1,n+2, n+3, n+4.

Case 1: If 4 divides one of n+1,n+2,n+3, then the conclusion holds. Case 2: If 4
divides n, then n = 4k and n+4 = 4(k+1) is divisible by 4, and the conclusion again holds.
b. Proof. Cases. Write n = 4q 4+ r for some 0 < r < 4. Case 1: In case r = 0, then
n = 4q, and n+4 = 4(g+1) is divisible by 4. In case r > 0, let k =4 —r € {1,2,3}. Then
n+k = 4g+4 = 4(g+1) is divisible by 4, and n + k is one of n+1,n+2,n+3. In either case,
one of n,n+1,n+2,n+3 is divisible by 4.

7. PROP: Let a1 =1 and ap41 = %an + 1 for n > 1. Then a,, < 2 for all n.

a. Proof. Induction. Base: a; = 1 < 2. Chain: Assume a, < 2 for some n. Then
Ani1 = 2a, +1< 2(2) +1=2. That is, an41 < 2.

8. PROP: Let p,q be distinct primes. Then log,(g) is irrational.

Proof. Contradiction. Assume that log,(q) is rational, meaning log,(q) = a/b for integers
a,b. We may assume a,b > 0 since the prime ¢ > 1, so log,(¢) > 0. Then posr(@) = pa/b,
so ¢ = p*?, and ¢ = p*. By the Fundamental Theorem of Arithmetic, any integer has
a unique factorization into primes, so it is not possible for ¢% to be factored as p® for a
different prime p (remember a,b > 0). This contradiction proves our original assumption
was false, meaning log,(g) is irrational.

9. PrOP: For any a,b € R, we have (a + b)? = a? + 2ab + b?

Proof. Direct proof. Note that 22 means z-z and 2 means 1+1.

(a+b)(a+b) = (a+b)a+(a+0b)b by distributivity
= aa+ba+ab+bbd by distributivity
= aa+ab+ab+bdb by multiplicative commutativity

a-a+ 1-ab+1-a-b+bb by multiplicative identity
a-a+ (1+1)-a-b+ b-b by distributivity
a? +2-a-b + b? by definition.

Also, we have used additive associativity throughout, which allows us to write expressions
like w + x + y + z without specifying which addition is done first, as in ((x + y) + z) + w
or (w+ (x+vy))+z.

10. prOP: 101 is a prime number.

Proof. We know that if n is composite, then n has a prime factor p < y/n. Contrapositively,
if n has no prime factor p < y/n, then n is prime. Now, n = 101 is not divisible by
p=2,3,5, or 7, since % = 50%, 101 332 % = 20%, 1—91 = 14%. These are all the
primes p < v/101 2 10.05, so 101 is pr1me.

11. To find all integer solutions to 5x + 13y = 1, we first perform the Euclidean Algorithm

on a = 13 and b = 5 (top-to-bottom), then perform back-substitution to get a particular
solution to 5z + 13y = ged(5, 13) (bottom-to-top):

13 =2(5)+3 1=-1(5) 4+ 2(13 — 2(5)) = 2(13) — 5(5)
5=1(3) +2 1=1(3)—1(6—-3) = —1(5) +2(3)
3= 1(2)+1 1=3-1(2)=1(3) - 1(2)
2=2(1)+0 1 = ged(13,5)

Now from the particular solution (2,—5), we get the general solution in terms of d =
ged(5,13) = 1: namely (z,y) = (2+ %’n, -5 — %m) = (24 13n,—5—5m) for all n,m € Z.



