
Math 299 Homework 9/11 Fall 2013

In Supplement 9/9, we defined the choose number, or binomial coefficient,
(
n
k

)
to be the number

of possible k-element subsets S ⊂ [n], where [n] = {1, 2, . . . , n}. For example,
(
4
2

)
= 6 counts

the 2-element subsets S ⊆ {1, 2, 3, 4}, namely: S = {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}.
We can put these numbers into an array called Pascal’s Triangle (in China, Yang Hui’s

Triangle; in Iran, Khayyam’s Triangle):(
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We can compute the entries by the formula
(
n
k

)
= n(n−1)···(n−k+1)

k! , but there is an easier way.
It is a remarkable fact that each entry in the triangle is the sum of the two entries immediately
above it (except for the edges

(
n
0

)
=

(
n
n

)
= 1). For example, the next row will be:(
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0

)
= 1,

(
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)
=

(
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)
+
(
4
1

)
= 5,

(
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)
=

(
4
1

)
+
(
4
2

)
= 10,

(
5
3

)
=

(
4
2

)
+
(
4
3

)
= 10, . . .

In general, the Recurrence Formula which generates the triangle is:

(∗)
(
n

k

)
=

(
n−1

k−1

)
+

(
n−1

k

)
.

Problem 1. Use the above recurrence to compute the
(
6
k

)
and

(
7
k

)
rows of the table.

Problem 2. Find the sum of each row:
(
n
0

)
+

(
n
1

)
+ · · · +

(
n
n

)
, for n = 0, 1, . . . , 7. Guess a

general formula for this sum.

Problem 3. Prove your formula from Prob. 2 by asking: what kind of objects are counted
by the left side? Then look in Supplement 9/9 and apply one of the propositions.

Next we consider how to prove the Recurrence Formula (∗) through the Bijection Principle:
we need to write he left and right sides of the formula as the cardinalities (sizes) of some sets
A and B.

•
(
n
k

)
= |A|, where A is the set of all k-element subsets of [n].

•
(
n−1
k−1

)
= |B1|, where B1 is the set of all (k−1)-element subsets of [n−1].

•
(
n−1
k

)
= |B2|, where B2 is the set of all k-element subsets of [n−1].

•
(
n−1
k−1

)
+
(
n−1
k

)
= |B1|+ |B2| = |B1 ∪ B2|, since B1 and B2 have no common elements.

Now we try to give a bijection φ : A → B1 ∪ B2: this will show that |A| = |B1| + |B2|, which
is precisely the recurrence formula

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
.

We define the bijection φ by specifying the output of an element of A, that is of k-element
subsets S ⊂ [n]. Let φ(S) = S′ = S \ {n}, meaning we remove n from S if it is present, and
leave S′ = S otherwise. We thus produce S′ ∈ B1 ∪ B2, a subset of [n−1] with either k−1 or
k elements.



For example, the bijection φ for
(
4
2

)
=

(
3
1

)
+

(
3
2

)
is given in the table, where S′ = φ(S):

S ∈ A {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
S′ ∈ B1 {1} {2} {3}
∈ B2 {1, 2} {1, 3} {2, 3}

Problem 4. Illustrate the mapping φ in the case of
(
5
3

)
=

(
4
2

)
+

(
4
3

)
. Make a table like the

one above.

Problem 5. Formally define the inverse mapping ψ : B1 ∪B2 → A, which undoes φ. That is,
given a subset S′ ⊂ [n−1] with either k−1 or k elements, define the corresponding k-element
S ⊂ [n]. Define S = ψ(S′), with separate cases for S′ ∈ B1 and S′ ∈ B2.

You do not need to prove that your ψ is inverse to φ, but take a fairly large example of S,
and verify that ψ(φ(S)) = S; also take an example of S′ and verify that and φ(ψ(S′)) = S′.


