
Math 254H Weekly Homework 6 Due 10/7/2019

Background: The Mean Value Theorem. This is an essential tool to
prove basic facts about derivatives and integrals, making sure there can be
no exceptions.

mean value theorem 1: If a function f : R → R is differentiable on an
interval [a, b], then one of its tangent slopes inside the interval is equal to the
secant slope across the interval: there is some c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Consider the vertical difference between the secant line and the graph
y = f(x):

g(x) = f(b)−f(a)
b−a (x−a) + f(a)− f(x).

This function is differentiable over the interval with end values g(a) = g(b) =
0, so it has a max or min point c ∈ (a, b), and we must have g′(c) = 0. (This

is Rolle’s Theorem, easy to show from the definition g′(c) = limx→0
g(x)−g(c)

x−c .)

But g′(x) = f(b)−f(a)
b−a − f ′(x), so:

0 = g′(c) = f(b)−f(a)
b−a − f ′(c).

mean value theorem 2: If a function f : R → R is continuous on an
interval [a, b], then one of its values inside the interval is equal to the average
value over the interval: there is some c ∈ (a, b) with

f(c) =
1

b− a

∫ b

a

f(t) dt .

Proof. Consider the integral function F (x) =
∫ x

a
f(t) dt. The First Fun-

damental Theorem of Calculus says this has derivative F ′(x) = f(x) for
x ∈ [a, b]. (This is because the rate of change of the area under the graph
above [a, x] is equal to the height at the right edge.)

Now, applying MVT 1 to F (x), there is some c ∈ (a, b) with:

f(c) = F ′(c) = F (b)−F (a)
b−a = 1

b−a

∫ b

a
f(t) dt.

To illustrate the use of the Mean Value Theorem, we need it to prove:

monotonicty: If f ′(x) ≥ 0 for all x ∈ [a, b], then f is increasing on [a, b].

Proof. Applying MVT 1 to any subinterval [ã, b̃] ⊂ [a, b] gives c ∈ (ã, b̃) with:

f(b̃)−f(ã)

b̃−ã = f ′(c) ≥ 0.

Multiplying both sides of the inequality by b̃−ã > 0 shows f(b̃) − f(ã) ≥ 0
and f(b̃) ≥ f(ã) for any a ≤ ã < b̃ ≤ b.



Problems

0. First, prove the familiar uniqueness theorem: If f1, f2 have the same
derivative f ′1(x) = f ′2(x) for all x ∈ [a, b], then f1(x) = f2(x) + C for a con-
stant C. Hint: Apply MVT 1 to the function g(x) = f1(x)− f2(x) over any
subinterval [ã, b̃] ⊂ [a, b].

Next, recall that for a vector field ~F (x, y) = (p(x, y), q(x, y)), we defined

curl ~F (x, y) as a kind of derivative which measures the counterclockwise ro-

tation of ~F near each point (x, y). We defined this in two ways: geometrically,
it is the rate of circulation around a small loop near (x, y), per unit area en-
closed; computationally, we add a counterclockwise contribution from the
change in the vertical component of ~F over a short horizontal increment, ∂q

∂x
,

and a clockwise contribution from the change in the horizontal component of
~F over a short vertical increment, ∂p

∂y
. The main goal is to prove the equiva-

lence of these two definitions.

theorem: For given x, y,∆x,∆y, let c(t) be a closed rectangular curve from
(x, y) to (x+∆x, y) to (x+∆x, y+∆y) to (x, y+∆y) back to (x, y). Then:

lim
∆x,∆y→0

1

∆x∆y

∮
c

~F (c) · dc =
∂q

∂x
(x, y)− ∂p

∂y
(x, y).

1. Parametrize c in four linear segments c1, . . . , c4, for example c1(t) =
(x+t, y) for t ∈ [0,∆x]. Find their (constant) tangent vectors c′1(t), . . . , c′4(t).
Split the line integral over the segments as

∮
=

∫
1

+ · · ·+
∫

4
, and simplify each

term as far as possible using the (x, y)-components of ~F and c. (Remember
that x, y,∆x,∆y are constants throughout this computation.)

2. To make Step 4 work below, you should substitute the variable t̃ = ∆x− t
in

∫
3

to make it match better with
∫

1
, and similarly for

∫
4

matching with
∫

2
.

Combine
∫

1
+
∫

3
into a single integral

∫ ∆x

0
, and similarly

∫
2

+
∫

4
=

∫ ∆y

0
.

3. Apply MVT 2 to the two integrals
∫ ∆x

0
and

∫ ∆y

0
, obtaining difference

quotients involving p and q. (No more integrals.)

4. Apply MVT 1 to each difference quotient, obtaining derivatives

−∂p

∂y
(x + d1, y + e1) and

∂q

∂x
(x + d2, y + e2),

where d1, d2 ∈ [x, x+∆x] and e1, e2 ∈ [y, y+∆y]. Now take the limit as
∆x,∆y → 0. To get the desired quantity, what assumption do you need
about the functions ∂p

∂y
(x, y), ∂q

∂x
(x, y)?


