Math 254H Weekly Homework 6 Due 10/7/2019

Background: The Mean Value Theorem. This is an essential tool to
prove basic facts about derivatives and integrals, making sure there can be
no exceptions.

MEAN VALUE THEOREM 1: If a function f : R — R is differentiable on an
interval [a, b], then one of its tangent slopes inside the interval is equal to the
secant slope across the interval: there is some ¢ € (a, b) with
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Proof. Consider the vertical difference between the secant line and the graph
y = [f(z):

g(x) = H e @—a) + f(a) - f(2).
This function is differentiable over the interval with end values g(a)

0, so it has a max or min point ¢ € (a, b), and we must have ¢'(c)
is Rolle’s Theorem, easy to show from the definition ¢'(¢) = lim, o

But g/(x) = {900 — f/(a). 5
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0 = g'(c) = B — f/(c).
MEAN VALUE THEOREM 2: If a function f : R — R is continuous on an
interval [a, b], then one of its values inside the interval is equal to the average
value over the interval: there is some ¢ € (a,b) with
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Proof. Consider the integral function F(x f f(t)dt. The First Fun-
damental Theorem of Calculus says thls has derivative F'(z) = f(x) for
€ [a,b]. (This is because the rate of change of the area under the graph
above [a, x] is equal to the height at the right edge.)
Now, applying MVT 1 to F(x), there is some ¢ € (a, b) with:

flo) = F'(c) = EO=Ea — oL % f(t)

To illustrate the use of the Mean Value Theorem, we need it to prove:

MONOTONICTY: If f/(x) > 0 for all x € [a,b], then f is increasing on [a, b].
Proof. Applying MVT 1 to any subinterval [a, ] C [a, ] gives ¢ € (a, b) with:

fo)—f@ _ f'(e) > 0.
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Multiplying both sides of the inequality by b—a > 0 shows f(b) — f (@) >0
and f(b) > f(a) for any a < @ < b < b.



Problems

0. First, prove the familiar UNIQUENESS THEOREM: If f;, fo have the same
derivative fi(x) = f5(z) for all x € [a,b], then fi(x) = fo(z) + C for a con-
stant C. Hint: Apply MVT 1 to the function g(x) = fi(z) — fo(z) over any
subinterval [d, b] C [a, D).

Next, recall that for a vector field F(z,y) = (p(z,y),q(x,y)), we defined
curl F(z,y) as a kind of derivative which measures the counterclockwise ro-
tation of F near each point (z,y). We defined this in two ways: geometrically,
it is the rate of circulation around a small loop near (z,y), per unit area en-
closed; computationally, we add a counterclockwise contribution from the
change in the vertical component of F over a short horizontal increment, %,
and a clockwise contribution from the change in the horizontal component of
F over a short vertical increment, g—z. The main goal is to prove the equiva-
lence of these two definitions.

THEOREM: For given z,y, Ax, Ay, let c(t) be a closed rectangular curve from
(x,y) to (x+Ax,y) to (z+Azx,y+Ay) to (x,y+Ay) back to (z,y). Then:

1 - _Jq dp
Az Ap—0 AzAy 7€F(C) de = Ox (z,9) - oy (z.9).

1. Parametrize c¢ in four linear segments cy,...,cyq, for example c;(t) =
(x+t,y) for t € [0, Az]. Find their (constant) tangent vectors ¢} (¢), ..., c)(t).
Split the line integral over the segments as § = [, +---+ [, and simplify each

term as far as possible using the (x, y)-components of F and c. (Remember
that x,y, Az, Ay are constants throughout this computation.)

2. To make Step 4 work below, you should substitute the variable t = Az —t
in [, to make it match better with [, and similarly for [, matching with [,.

Combine [, + [, into a single integral fOM, and similarly [, + [, = OAy.

3. Apply MVT 2 to the two integrals fom and fOAy, obtaining difference
quotients involving p and ¢. (No more integrals.)

4. Apply MVT 1 to each difference quotient, obtaining derivatives
0 0
_a_§($+d1ay+€1) and a_z(x+d2)y+62)u

where di,ds € [r,z+Az]| and ey, es € [y,y+Ay]. Now take the limit as
Ax, Ay — 0. To get the desired quantity, what assumption do you need
about the functions g—z(a:, ), %(:c, y)?



