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Preface

The Structure of this Supplement. This Internet Supplement is in-
tended to be used with the 6th Edition of our text Vector Calculus. It
contains supplementary material that gives further information on various
topics in Vector Calculus, including different applications and also technical
proofs that were omitted from the main text.

The supplement is intended for students who wish to gain a deeper un-
derstanding, usually by self study, of the material—both for the theory as
well as the applications.

Corrections and Website. A list of corrections and suggestions con-
cerning the text and instructors guide are available available on the book’s
website:

http://www.whfreeman.com/MarsdenVC6e

Please send any new corrections you may find to one of us.

More Websites. There is of course a huge number of websites that con-
tain a wealth of information. Here are a few sample sites that are relevant
for the book:

1. For spherical geometry in Figure 8.2.13 of the main text, see
http://torus.math.uiuc.edu/jms/java/dragsphere/

which gives a nice JAVA applet for parallel transport on the sphere.

2. For further information on the Sunshine formula (see §4.1C of this
internet supplement), see
http://www.math.niu.edu/~rusin/uses-math/position.sun/

http://www.whfreeman.com/MarsdenVC6e
http://torus.math.uiuc.edu/jms/java/dragsphere/
http://www.math.niu.edu/~rusin/uses-math/position.sun/
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3. For the Genesis Orbit shown in Figure 4.1.11, see
http://genesismission.jpl.nasa.gov/

4. For more on Newton, see for instance,
http://scienceworld.wolfram.com/biography/Newton.html

and for Feynman, see
http://www.feynman.com/

5. For surface integrals using Mathematica Notebooks, see
http://www.math.umd.edu/~jmr/241/surfint.htm

Practice Final Examination. Also on the Book Companion Web Site,
students will find a Practice Final Examination that covers topics in the
whole book, complete with solutions. We recommend, if you wish to prac-
tice your skills, that you allow yourself 3 hours to take the exam and then
self-mark it, keeping in mind that there is often more than one way to
approach a problem.

Acknowledgements. As with the main text, the student guide, and the
Instructors Manual, we are very grateful to the readers of earlier editions
of the book for providing valuable advice and pointing out places where
the text can be improved. For this internet supplement, we are especially
grateful to Alan Weinstein for his collaboration in writing the supplement
on the sunshine formula (see the supplement to Chapter 4) and for making
a variety of other interesting and useful remarks. We thank a number of
readers for their helpful comments on this supplement, including Brian
Bradie, Dave Rusin and Paulo Sousa.

We send everyone who uses this supplement and the book our best re-
gards and hope that you will enjoy your studies of vector calculus and that
you will benefit (both intellectually and practically) from it.

Anthony Tromba (tromba@math.ucsc.edu)
Department of Mathematics
University of California
Santa Cruz, CA 95064

http://genesismission.jpl.nasa.gov/
http://scienceworld.wolfram.com/biography/Newton.html
http://www.feynman.com/
http://www.math.umd.edu/~jmr/241/surfint.htm
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2
Differentiation

In the first edition of Principia Newton admitted that Leib-
niz was in possession of a similar method (of tangents) but
in the third edition of 1726, following the bitter quarrel be-
tween adherents of the two men concerning the independence
and priority of the discovery of the calculus, Newton deleted
the reference to the calculus of Leibniz. It is now fairly clear
that Newton’s discovery antedated that of Leibniz by about
ten years, but that the discovery by Leibniz was independent
of that of Newton. Moreover, Leibniz is entitled to priority of
publication, for he printed an account of his calculus in 1684
in the Acta Eruditorum, a sort of “scientific monthly” that had
been established only two years before.

Carl B. Boyer
A History of Mathematics

§2.7 Some Technical Differentiation Theorems

In this section we examine the mathematical foundations of differential
calculus in further detail and supply some of the proofs omitted from §§2.2,
2.3, and 2.5.

Limit Theorems. We shall begin by supplying the proofs of the limit
theorems presented in §2.2 (the theorem numbering in this section cor-
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responds to that in Chapter 2). We first recall the definition of a limit.1

Definition of Limit. Let f : A ⊂ Rn → Rm where A is open. Let
x0 be in A or be a boundary point of A, and let N be a neighborhood of
b ∈ Rm. We say f is eventually in N as x approaches x0 if there
exists a neighborhood U of x0 such that x 6= x0,x ∈ U , and x ∈ A implies
f(x) ∈ N . We say f(x) approaches b as x approaches x0, or, in symbols,

lim
x→x0

f(x) = b or f(x)→ b as x→ x0,

when, given any neighborhood N of b, f is eventually in N as x approaches
x0. If, as x approaches x0, the values f(x) do not get close to any particular
number, we say that limx→x0 f(x) does not exist.

Let us first establish that this definition is equivalent to the ε-δ formu-
lation of limits. The following result was stated in §2.2.

Theorem 6. Let f : A ⊂ Rn → Rm and let x0 be in A or be a boundary
point of A. Then limx→x0 f(x) = b if and only if for every number ε > 0
there is a δ > 0 such that for any x ∈ A satisfying 0 < ‖x − x0‖ < δ, we
have ‖f(x)− b‖ < ε.

Proof. First let us assume that limx→x0
f(x) = b. Let ε > 0 be given,

and consider the ε neighborhood N = Dε(b), the ball or disk of radius
ε with center b. By the definition of a limit, f is eventually in Dε(b), as
x approaches x0, which means there is a neighborhood U of x0 such that
f(x) ∈ Dε(b) if x ∈ U , x ∈ A, and x 6= x0. Now since U is open and x0 ∈ U ,
there is a δ > 0 such that Dδ(x0) ⊂ U . Consequently, 0 < ‖x − x0‖ < δ
and x ∈ A implies x ∈ Dδ(x0) ⊂ U . Thus f(x) ∈ Dε(b), which means that
‖f(x)− b‖ < ε. This is the ε-δ assertion we wanted to prove.

We now prove the converse. Assume that for every ε > 0 there is a
δ > 0 such that 0 < ‖x − x0‖ < δ and x ∈ A implies ‖f(x) − b‖ < ε.
Let N be a neighborhood of b. We have to show that f is eventually
in N as x → x0; that is, we must find an open set U ⊂ Rn such that
x ∈ U,x ∈ A, and x 6= x0 implies f(x) ∈ N . Now since N is open, there is
an ε > 0 such that Dε(b) ⊂ N . If we choose U = Dδ(x) (according to our
assumption), then x ∈ U , x ∈ A and x 6= x0 means ‖f(x) − b‖ < ε, that
is f(x) ∈ Dε(b) ⊂ N . �

Properties of Limits. The following result was also stated in §2.2. Now
we are in a position to provide the proof.

1For those interested in a different pedagogical approach to limits and the derivative,

we recommend Calculus Unlimited by J. Marsden and A. Weinstein. It is freely available

on the Vector Calculus website given in the Preface.
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Theorem 2. Uniqueness of Limits. If

lim
x→x0

f(x) = b1 and lim
x→x0

f(x) = b2,

then b1 = b2.

Proof. It is convenient to use the ε-δ formulation of Theorem 6. Suppose
f(x)→ b1 and f(x)→ b2 as x→ x0. Given ε > 0, we can, by assumption,
find δ1 > 0 such that if x ∈ A and 0 < ‖x−x0‖ < δ2, then ‖f(x)−b1‖ < ε,
and similarly, we can find δ1 > 0 such that 0 < ‖x − x0‖ < δ2 implies
‖f(x) − b2‖ < ε. Let δ be the smaller of δ1 and δ2. Choose x such that
0 < ‖x − x0‖ < δ and x ∈ A. Such x’s exist, because x0 is in A or is a
boundary point of A. Thus, using the triangle inequality,

‖b1 − b2‖ = ‖(b1 − f(x)) + (f(x)− b2)‖
≤ ‖b1 − f(x)‖+ ‖f(x)− b2‖ < ε+ ε = 2ε.

Thus for every ε > 0, ‖b1 − b2‖ < 2ε. Hence b1 = b2, for if b1 6= b2 we
could let ε = ‖b1 − b2‖/2 > 0 and we would have ‖b1 − b2‖ < ‖b1 − b2‖,
an impossibility. �

The following result was also stated without proof in §2.2.

Theorem 3. Properties of Limits. Let f : A ⊂ Rn → Rm, g : A ⊂
Rn → Rm,x0 be in A or be a boundary point of A,b ∈ Rm, and c ∈ R; the
following assertions than hold:

(i) If limx→x0
f(x) = b, then limx→x0

cf(x) = cb, where cf : A → Rm
is defined by x 7−→ c(f(x)).

(ii) If limx→x0
f(x)− b1 and limx→x0

g(x) = b2, then

lim
x→x0

(f + g)(x) = b1 + b2,

where (f + g) : A→ Rm is defined by x 7−→ f(x) + g(x).

(iii) If m = 1, limx→x0 f(x) = b1, and limx→x0 g(x) = b2, then

lim
x→x0

(fg)(x) = b1b2,

where (fg) : A→ R is defined by x 7−→ f(x)g(x).

(iv) If m = 1, limx→x0 f(x) = b 6= 0, and f(x) 6= 0 for all x ∈ A, then

lim
x→x0

1

f
=

1

b
,

where 1/f : A→ R is defined by x 7−→ 1/f(x).
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(v) If f(x) = (f1(x), . . . , fm(x)), where fi : A→ R, i = 1, . . . ,m, are the
component functions of f , then limx→x0

f(x) = b = (b1, . . . , bm) if
and only if limx→x0 fi(x) = bi for each i = 1, . . . ,m.

Proof. We shall illustrate the technique of proof by proving assertions (i)
and (ii). The proofs of the other assertions are only a bit more complicated
and may be supplied by the reader. In each case, the ε-δ formulation of
Theorem 6 is probably the most convenient approach.

To prove rule (i), let ε > 0 be given; we must produce a number δ > 0
such that the inequality ‖cf(x)−cb‖ < ε holds if 0 < ‖x−x0‖ < δ. If c = 0,
any δ will do, so we can suppose c 6= 0. Let ε′ = ε/|c|; from the definition
of limit, there is a δ with the property that 0 < ‖x − x0‖ < δ implies
‖f(x) − b‖ < ε′ = ε/|c|. Thus 0 < ‖x − x0‖ < δ implies ‖cf(x) − cb‖ =
|c|‖f(x)− b‖| < ε, which proves rule (i).

To prove rule (ii), let ε > 0 be given again. Choose δ1 > 0 such that
0 < ‖x−x0‖ < δ1 implies ‖f(x)−b1‖ < ε/2. Similarly, choose δ2 > 0 such
that 0 < ‖x−x0‖ < δ2 implies ‖g(x)−b2‖ < ε/2. Let δ be the lesser of δ1
and δ2. Then 0 < ‖x− x0‖ < δ implies

‖f(x) + g(x)− b1 − b2‖ ≤ ‖f(x)− b1‖+ ‖g(x)− b2‖ <
ε

2
+
ε

2
= ε.

Thus, we have proved that (f + g)(x)→ b1 + b2 as x→ x0. �

Example 1. Find the following limit if it exists:

lim
(x,y)→(0,0)

(
x3 − y3

x2 + y2

)
.

Solution. Since

0 ≤
∣∣∣∣x3 − y3

x2 + y2

∣∣∣∣ ≤ |x|x2 + |y|y2

x2 + y2
≤ (|x|+ |y|)(x2 + y2)

x2 + y2
= |x|+ |y|,

we find that

lim
(x,y)→(0,0)

x3 − y3

x2 + y2
= 0. �

Continuity. Now that we have the limit theorems available, we can use
this to study continuity; we start with the basic definition of continuity of
a function.

Definition. Let f : A ⊂ Rn → Rm be a given function with domain A.
Let x0 ∈ A. We say f is continuous at x0 if and only if

lim
x→x0

f(x) = f(x0).

If we say that f is continuous, we shall mean that f is continuous at each
point x0 of A.
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From Theorem 6, we get the ε-δ criterion for continuity.

Theorem 7. A mapping f : A ⊂ Rn → Rm is continuous at x0 ∈ A if
and only if for every number ε > 0 there is a number δ > 0 such that

x ∈ A and ‖x− x0‖ < δ implies ‖f(x)− f(x0)‖ < ε.

One of the properties of continuous functions stated without proof in
§2.2 was the following:

Theorem 5. Continuity of Compositions. Let f : A ⊂ Rn → Rm and
let g : B ⊂ Rm → Rp. Suppose f(A) ⊂ B so that g ◦ f is defined on A. If
f is continuous at x0 ∈ A and g is continuous at y0 = f(x0), then g ◦ f is
continuous at x0.

Proof. We use the ε-δ criterion for continuity. Thus, given ε > 0, we
must find δ > 0 such that for x ∈ A.

‖x− x0‖ < δ implies ‖(g ◦ f)(x)− (g ◦ f)(x0)‖ < ε.

Since g is continuous at f(x0) = y0 ∈ B, there is a γ > 0 such that for
y ∈ B,

‖y − y0‖ < γ implies ‖g(y)− g(f(x0))‖ < ε.

Since f is continuous x0 ∈ A, there is, for this γ, a δ > 0 such that for
x ∈ A,

‖x− x0‖ < δ implies ‖f(x)− f(x0)‖ < γ,

which in turn implies

‖g(f(x))− g(f(x0))‖ < ε,

which is the desired conclusion. �

Differentiability. The exposition in §2.3 was simplified by assuming, as
part of the definition of Df(x0), that the partial derivatives of f existed.
Our next objective is to show that this assumption can be omitted. Let us
begin by redefining “differentiable.” Theorem 15 below will show that the
new definition is equivalent to the old one.

Definition. Let U be an open set in Rn and let f : U ⊂ Rn → Rm be a
given function. We say that f is differentiable at x0 ∈ U if and only if
there exists an m× n matrix T such that

lim
x→x0

‖f(x)− f(x0)−T(x− x0)‖
‖x− x0‖

= 0. (1)
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We call T the derivative of f at x0 and denote it by Df(x0). In matrix
notation, T(x− x0) stands for

T11 T12 . . . T1n

T21 T22 . . . T2n
...

...
...

Tm1 Tm2 . . . Tmn


x1 − x01

...
xn − x0n

 .
where x = (x1, . . . , xn), x0 = (x01, . . . , x0n), and where the matrix entries
of T are denoted [Tij ]. Sometimes we write T(y) as T · y or just Ty for
the product of the matrix T with the column vector y.

Condition (1) can be rewritten as

lim
h→0

‖f(x0 + h)− f(x0)−Th‖
‖h‖

= 0 (2)

as we see by letting h = x−x0. Written in terms of ε-δ notation, equation
(2) says that for every ε > 0 there is a δ > 0 such that 0 < ‖h‖ < δ implies

‖f(x0 + h)− f(x0)−Th‖
‖h‖

< ε,

or, in other words,

‖f(x0 + h)− f(x0)−Th‖ < ε‖h‖.

Notice that because U is open, as long as δ is small enough, ‖h‖ < δ implies
x0 + h ∈ U .

Our first task is to show that the matrix T is necessarily the matrix of
partial derivatives, and hence that this abstract definition agrees with the
definition of differentiability given in §2.3.

Theorem 15. Suppose f : U ⊂ Rn → Rm is differentiable at x0 ∈ Rn.
Then all the partial derivatives of f exist at the point x0 and the m × n
matrix T has entries given by

[Tij ] =

[
∂fi
∂xj

]
,

that is,

T = Df(x0) =


∂f1

∂x1
. . .

∂f1

∂xn
...

...
∂fm
∂x1

. . .
∂fm
∂xn

 ,
where ∂fi/∂xj is evaluated at x0. In particular, this implies that T is
uniquely determined; that is, there is no other matrix satisfying condition
(1).
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Proof. By Theorem 3(v), condition (2) is the same as

lim
h→0

|fi(x0 + h)− fi(x0)− (Th)i|
‖h‖

= 0, 1 ≤ i ≤ m.

Here (Thi) stands for the ith component of the column vector Th. Now
let h = aej = (0, . . . , a, . . . , 0), which has the number a in the jth slot and
zeros elsewhere. We get

lim
a→0

|fi(x0 + aej)− fi(x0)− a(Tej)i|
|a|

= 0,

or, in other words,

lim
a→0

∣∣∣∣fi(x0 + aej)− fi(x0)

a
− (Tej)i

∣∣∣∣ = 0,

so that

lim
a→0

fi(x0 + aej)− fi(x0)

a
= (Tej)i.

But this limit is nothing more than the partial derivative ∂fi/∂xj evaluated
at the point x0. Thus, we have proved that ∂fi/∂xj exists and equals
(Tej)i. But (Tej)i = Tij (see §1.5 of the main text), and so the theorem
follows. �

Differentiability and Continuity. Our next task is to show that dif-
ferentiability implies continuity.

Theorem 8. Let f : U ⊂ Rn → Rm be differentiable at x0. Then f is
continuous at x0, and furthermore, ‖f(x)−f(x0)‖ < M1‖x−x0‖ for some
constant M1 and x near x0,x 6= x0.

Proof. We shall use the result of Exercise 2 at the end of this section,
namely that,

‖Df(x0) · h‖ ≤M‖h‖,

where M is the square root of the sum of the squares of the matrix elements
in Df(x0).

Choose ε = 1. Then by the definition of the derivative (see formula (2))
there is a δ1 > 0 such that 0 < ‖h‖ < δ1 implies

‖f(x0 + h)− f(x0)−Df(x0) · h‖ < ε‖h‖ = ‖h‖.

If ‖h‖ < δ1, then using the triangle inequality,

‖f(x0 + h)− f(x0)‖ = ‖f(x0 + h)− f(x0)−Df(x0) · h + Df(x0) · h‖
≤ ‖f(x0 + h)− f(x0)−Df(x0) · h‖+ ‖Df(x0) · h‖
< ‖h‖+M‖h‖ = (1 +M)‖h‖.
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Setting x = x0 + h and M1 = 1 + M , we get the second assertion of the
theorem.

Now let ε′ be any positive number, and let δ be the smaller of the two
positive numbers δ1 and ε′/(1 +M). Then ‖h‖ < δ implies

‖f(x0 + h)− f(x0)‖ < (1 +M)
ε′

1 +M
= ε′,

which proves that (see Exercise 15 at the end of this section)

lim
x→x0

f(x) = lim
h→0

f(x0 + h) = f(x0),

so that f is continuous at x0. �

Criterion for Differentiability. We asserted in §2.3 that an important
criterion for differentiability is that the partial derivatives exist and are
continuous. We now are able to prove this.

Theorem 9. Let f : U ⊂ Rn → Rm. Suppose the partial derivatives
∂fi/∂xj of f all exist and are continuous in some neighborhood of a point
x ∈ U . Then f is differentiable at x.

Proof. In this proof we are going to use the mean value theorem from one-
variable calculus—see §2.5 of the main text for the statement. To simplify
the exposition, we shall only consider the case m = 1, that is, f : U ⊂
Rn → R, leaving the general case to the reader (this is readily supplied
knowing the techniques from the proof of Theorem 15, above).

According to the definition of the derivative, our objective is to show
that

lim
h→0

∣∣∣∣f(x + h)− f(x)−
n∑
i=1

[
∂f

∂xi
(x)

]
hi

∣∣∣∣
‖h‖

= 0.

Write

f(x1 + h1, . . . , xn + hn)− f(x1, . . . , xn)

= f(x1 + h1, . . . , xn + hn)− f(x1, x2 + h2, . . . , xn + hn)

+f(x1, x2 + h2, . . . , xn + hn)− f(x1, x2, x3 + h3, . . . , xn + h) + . . .

+f(x1, . . . , xn−1 + hn−1, xn + hn)− f(x1, . . . , xn−1, xn + hn)

+f(x1, . . . , xn−1, xn + hn)− f(x1, . . . , xn).

This is called a telescoping sum, since each term cancels with the suc-
ceeding or preceding one, except the first and the last. By the mean value
theorem, this expression may be written as

f(x + h)− f(x) =

[
∂f

∂x1
(y1)

]
h1 +

[
∂f

∂x2
(y2)

]
h2 + . . .+

[
∂f

∂xn
(y2)

]
hn,
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where y1 = (c1, x2 + h2, . . . , xn + hn) with c1 lying between x1 and x1 +
h1; y2 = (x1, c2, x3 +h3, . . . , xn+hn) with c2 lying between x2 and x2 +h2;
and yn = (x1, . . . , xn−1, cn) where cn lies between xn and xn + hn. Thus,
we can write∣∣∣∣∣f(x + h)− f(x)−

n∑
i=1

[
∂f

∂xi
(x)

]
hi

∣∣∣∣∣
=

∣∣∣∣( ∂f

∂x1
(y1)− ∂f

∂x1
(x)

)
h1 + . . .+

(
∂f

∂xn
(yn)− ∂f

∂xn
(x)

)
hn

∣∣∣∣ .
By the triangle inequality, this expression is less than or equal to∣∣∣∣ ∂f∂x1

(y1)− ∂f

∂x1
(x)

∣∣∣∣ |h1|+ . . .+

∣∣∣∣ ∂f∂xn (yn)− ∂f

∂xn
(x)

∣∣∣∣ |hn|
≤
{∣∣∣∣ ∂f∂x1

(y1)− ∂f

∂x1
(x)

∣∣∣∣+ . . .+

∣∣∣∣ ∂f∂xn (yn)− ∂f

∂xn
(x)

∣∣∣∣} ‖h‖.
since |hi| ≤ ‖h‖ for all i. Thus, we have proved that∣∣∣∣f(x + h)− f(x)−

n∑
i=1

[
∂f

∂xi
(x)

]
hi

∣∣∣∣
‖h‖

≤
∣∣∣∣ ∂f∂x1

(y1)− ∂f

∂x1
(x)

∣∣∣∣+ . . .+

∣∣∣∣ ∂f∂xn (yn)− ∂f

∂xn
(x)

∣∣∣∣ .
But since the partial derivatives are continuous by assumption, the right
side approaches 0 as h→ 0 so that the left side approaches 0 as well. �

Here is an interesting point about this proof: while the proof requires that
the partial derivatives of f exist in a neighborhood of x, it only requires
continuity of the partial derivatives at the point x. This proof also uses the
mean value theorem for functions of one variable and so it is important
to notice that the mean value theorem from single variable calculus for
a continuous function f : [a, b] → R does not require continuity of the
derivative, only its existence on the open interval (a, b). 2

Chain Rule. As explained in §2.5, the Chain Rule is right up there with
the most important results in differential calculus. We are now in a position
to give a careful proof.

Theorem 11: Chain Rule. Let U ⊂ Rn and V ⊂ Rm be open. Let
g : U ⊂ Rn → Rm and f : V ⊂ Rm → Rp be given functions such that g

2For the precise statement of the mean value theorem, see any good single variable

Calculus textbook or a basic book on real analysis, such as Elementary Classical Anal-

ysis, Second Edition, by Marsden and Hoffman, W.H. Freeman and Co., 1993.
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maps U into V , so that f ◦ g is defined. Suppose g is differentiable at x0

and f is differentiable at y0 = g(x0). Then f ◦ g is differentiable at x0 and

D(f ◦ g)(x0) = Df(y0)Dg(x0).

Proof. According to the definition of the derivative, we must verify that

lim
x→x0

‖f(g(x))− f(g(x0))−Df(y0)Dg(x0) · (x− x0)‖
‖x− x0‖

= 0.

First rewrite the numerator and apply the triangle inequality as follows:

‖f(g(x))− f(g(x0))−Df(y0 · (g(x)− g(x0))

+ Df(y0) · [g(x)− g(x0)−Dg(x0) · (x− x0)]‖
≤ ‖f(g(x))− f(g(x0))−Df(y0) · (g(x)− g(x0))‖

+ ‖Df(y0) · [g(x)− g(x0)−Dg(x0) · (x− x0])‖. (3)

As in the proof of Theorem 8, ‖Df(y0) ·h‖ ≤M‖h‖ for some constant M .
Thus the right-hand side of inequality (3) is less than or equal to

‖f(g(x))− f(g(x0))−Df(y0) · (g(x)− g(x0))‖
+M‖g(x)− g(x0)−Dg(x0) · (x− x0)‖. (4)

Since g is differentiable at x0, given ε > 0, there is a δ1 > 0 such that
0 < ‖x− x0‖ < δ1 implies

‖g(x)− g(x0)−Dg(x0) · (x− x0)‖
‖x− x0‖

<
ε

2M
.

This makes the second term in expression (4) less than ε‖x− x0‖/2.
Let us turn to the first term in expression (4). By Theorem 8,

‖g(x)− g(x0)‖ < M1‖x− x0‖

for a constant M1 if x is near x0, say 0 < ‖x − x0‖ < δ2. Now choose δ3
such that 0 < ‖y − y0‖ < δ3 implies

‖f(y)− f(y0)−Df(y0) · (y − y0)‖ < ε‖y − y0‖
2M1

.

Since y = g(x) and y0 = g(x0), ‖y − y0‖ < δ3 if ‖x − x0‖ < δ3/M1 and
‖x− x0‖ < δ2, and so

‖f(g(x)) − f(g(x0))−Df(y0) · (g(x)− g(x0))‖

≤ ε‖g(x)− g(x0)‖
2M1

<
ε‖x− x0‖

2
.
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Thus if δ = min(δ1, δ2, δ3/M1), expression (4) is less than

ε‖x− x0‖
2

+
ε‖x− x0‖

2
= ε‖x− x0‖,

and so
‖f(g(x))− f(g(x0))−Df(y0)Dg(x0)(x− x0)‖

‖x− x0‖
< ε

for 0 < ‖x− x0‖ < δ. This proves the theorem. �

A Crinkled Function. The student has already met with a number of
examples illustrating the above theorems. Let us consider one more of a
more technical nature.

Example 2. Let

f(x, y) =


xy√
x2 + y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Is f differentiable at (0, 0)? (See Figure 2.7.1.)

x

y

z

Figure 2.7.1. This function is not differentiable at (0, 0), because it is “crinkled.”

Solution. We note that

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x

= lim
x→0

(x · 0)/
√
x2 + 0− 0

x
= lim
x→0

0− 0

x
= 0
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and similarly, (∂f/∂y)(0, 0) = 0. Thus the partial derivatives exist at (0, 0).
Also, if (x, y) 6= (0, 0), then

∂f

∂x
=
y
√
x2 + y2 − 2x(xy)/2

√
x2 + y2

x2 + y2
=

y√
x2 + y2

− x2y

(x2 + y2)3/2
,

which does not have a limit as (x, y)→ (0, 0). Different limits are obtained
for different paths of approach, as can be seen by letting x = My. Thus
the partial derivatives are not continuous at (0, 0), and so we cannot apply
Theorem 9.

We might now try to show that f is not differentiable (f is continuous,
however). If Df(0, 0) existed, then by Theorem 15 it would have to be the
zero matrix, since ∂f/∂x and ∂f/∂y are zero at (0, 0). Thus, by definition
of differentiability, for any ε > 0 there would be a δ > 0 such that 0 <
‖(h1, h2)‖ < δ implies

|f(h1, h2)− f(0, 0)|
‖(h1, h2)‖

< ε

that is, |f(h1, h2)| < ε‖(h1, h2)‖, or |h1h2| < ε(h2
1 + h2

2). But if we choose
h1 = h2, this reads 1/2 < ε, which is untrue if we choose ε ≤ 1/2. Hence,
we conclude that f is not differentiable at (0, 0). �

Exercises3

1. Let f(x, y, z) = (ex, cos y, sin z). Compute Df . In general, when will
Df be a diagonal matrix?

2. (a) Let A : Rn → Rm be a linear transformation with matrix {Aij}
so that Ax has components yi =

∑
j Aijxj . Let

M =

(∑
ij

A2
ij

)1/2

.

Use the Cauchy-Schwarz inequality to prove that ‖Ax‖ ≤M‖x‖.
(b) Use the inequality derived in part (a) to show that a linear

transformation T : Rn → Rm with matrix [Tij ] is continuous.

(c) Let A : Rn → Rm be a linear transformation. If

lim
x→0

Ax

‖x‖
= 0,

show that A = 0.

3Answers, and hints for odd-numbered exercises are found at the end of this supple-

ment, as well as selected complete solutions.
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3. Let f : A → B and g : B → C be maps between open subsets of
Euclidean space, and let x0 be in A or be a boundary point of A and
y0 be in B or be a boundary point of B.

(a) If limx→0 f(x) = y0 and limy→y0
g(y) = w, show that, in gen-

eral, limx→x0 g(f(x)) need not equal w.

(b) If y0 ∈ B, and w = g(y0), show that limx→x0
g(f(x)) = w.

4. A function f : A ⊂ Rn → Rm is said to be uniformly continuous if
for every ε > 0 there is a δ > 0 such that for all points p and q ∈ A,
the condition ‖p − q‖ < δ implies ‖f(p) − f(q)‖ < ε. (Note that a
uniformly continuous function is continuous; describe explicitly the
extra property that a uniformly continuous function has.)

(a) Prove that a linear map T : Rn → Rm is uniformly continuous.
[HINT: Use Exercise 2.]

(b) Prove that x 7−→ 1/x2 on (0, 1] is continuous, but not uniformly
continuous.

5. Let A = [Aij ] be a symmetric n× n matrix (that is, Aij = Aji) and
define f(x) = x ·Ax, so f : Rn → R. Show that ∇f(x) is the vector
2Ax.

6. The following function is graphed in Figure 2.7.2:

f(x, y) =


2xy2√
x2 + y4

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

x
y

z

Figure 2.7.2. Graph of z = 2xy2/(x2 + y4).
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Show that ∂f/∂x and ∂f/∂y exist everywhere; in fact all directional
derivatives exist. But show that f is not continuous at (0, 0). Is f
differentiable?

7. Let f(x, y) = g(x) +h(y), and suppose g is differentiable at x0 and h
is differentiable at y0. Prove from the definition that f is differentiable
at (x0, y0).

8. Use the Cauchy-Schwarz inequality to prove the following: for any
vector v ∈ Rn,

lim
x→x0

v · x = v · x0.

9. Prove that if limx→x0 f(x) = b for f : A ⊂ Rn → R, then

lim
x→x0

[f(x)]2 = b2 and lim
x→x0

√
|f(x)| =

√
|b|.

[You may wish to use Exercise 3(b).]

10. Show that in Theorem 9 with m = 1, it is enough to assume that
n − 1 partial derivatives are continuous and merely that the other
one exists. Does this agree with what you expect when n = 1?

11. Define f : R2 → R by

f(x, y) =

{ xy

(x2 + y2)1/2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Show that f is continuous.

12. (a) Does lim
(x,y)→(0,0)

x

x2 + y2
exist?

(b) Does lim
(x,y)→(0,0)

x3

x2 + y2
exist?

13. Find lim
(x,y)→(0,0)

xy2√
x2 + y2

.

14. Prove that s : R2 → R, (x, y) 7−→ x+ y is continuous.

15. Using the definition of continuity, prove that f is continuous at x if
and only if

lim
h→0

f(x + h) = f(x).

16. (a) A sequence xn of points in Rm is said to converge to x, written
xn → x as n → ∞, if for any ε > 0 there is an N such that
n ≥ N implies ‖x−x0‖ < ε. Show that y is a boundary point of
an open set A if and only if y is not in A and there is a sequence
of distinct points of A converging to y.
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(b) Let f : A ⊂ Rn → Rm and y be in A or be a boundary point
of A. Prove that limx→y f(x) = b if and only if f(xn) → b for
every sequence xn of points in A with xn → y.

(c) If U ⊂ Rm is open, show that f : U → Rp is continuous if and
only if xn → x ∈ U implies f(xn)→ f(x).

17. If f(x) = g(x) for all x 6= A and if limx→A f(x) = b, then show that
limx→A g(x) = b, as well.

18. Let A ⊂ Rn and let x0 be a boundary point of A. Let f : A → R
and g : A → R be functions defined on A such that limx→x0

f(x)
and limx→x0

g(x) exist, and assume that for all x in some deleted
neighborhood of x0, f(x) ≤ g(x). (A deleted neighborhood of x0 is
any neighborhood of x0, less x0 itself.)

(a) Prove that limx→x0 f(x) ≤ limx→x0 g(x). [HINT: Consider the
function φ(x) = g(x)− f(x); prove that limx→x0

φ(x) ≥ 0, and
then use the fact that the limit of the sum of two functions is
the sum of their limits.]

(b) If f(x) < g(x), do we necessarily have strict inequality of the
limits?

19. Given f : A ⊂ Rn → Rm, we say that “f is o(x) as x → 0” if
limx→0 f(x)/‖x‖ = 0.

(a) If f1 and f2 are o(x) as x → 0, prove that f1 + f2 is also o(x)
as x→ 0.

(b) Let g : A → R be a function with the property that there is a
number c > 0 such that |g(x) ≤ c for all x in A (the function g
is said to be bounded). If f is o(x) as x → 0, prove that gf is
also o(x) as x→ 0 [where (gf)(x) = g(x)f(x)].

(c) Show that f(x) = x2 is o(x) as x → 0. Is g(x) = x also o(x) as
x→ 0?



16 2 Differentiation



Page 17

3
Higher-Order Derivatives and Extrema

Euler’s Analysis Infinitorum (on analytic geometry) was fol-
lowed in 1755 by the Institutiones Calculi Differentialis, to which
it was intended as an introduction. This is the first text-book
on the differential calculus which has any claim to be regarded
as complete, and it may be said that until recently many mod-
ern treatises on the subject are based on it; at the same time it
should be added that the exposition of the principles of the sub-
ject is often prolix and obscure, and sometimes not altogether
accurate.

W. W. Rouse Ball
A Short Account of the History of Mathematics

Supplement 3.1
The Korteweg–de Vries Equation

Example. The partial differential equation ut + uxxx + uux = 0, called
the Korteweg–de Vries equation (or KdV equation, for short), describes the
motion of water waves in a shallow channel.

(a) Show that for any positive constant c, the function

u(x, t) = 3c sech2
[

1
2 (x− ct)

√
c
]
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is a solution of the Korteweg–de Vries equation. (This solution rep-
resents a traveling “hump” of water in the channel and is called a
soliton.)
1

(b) How do the shape and speed of the soliton depend on c?

�

Solution. (a) We compute ut, ux, uxx, and uxxx using the chain rule
and the differentiation formula (d/dx) sechx = − sechx tanhx from one-
variable calculus. Letting α = (x− ct)

√
c/2,

ut = 6c sech α
∂

∂t
sech α = −6c sech2 α tanhα

∂α

∂t

= 3c5/2 sech2 α tanhα = c3/2u tanhα.
Also,

ux = −6c sech2 α tanhα
∂α

∂x

= −3c3/2 sech2 α tanhα = −
√
c u tanhα,

and so ut + cux = 0 and

015

xx

u u

−10 −5015−10 −5

0.1

0.2

0.3

0.4

0.5

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) (b)

0.6

Figure 3.1.1. The graph of u(x, t) = 3 sech2(
√
c(x − ct)/2) for c = 1

4
at times

(a) t = 0 and (b) t = 10.

uxx = −
√
c

[
ux tanh α+ u(sech2 α)

√
c

2

]
= −
√
c (tanhα)ux −

u2

6

= c(tanh2 α)u− u2

6
= c(1− sech2 α)u− u2

6

= cu− u2

3
− u2

6
= cu− u2

2
.

1Solitons were first observed by J. Scott Russell around 1840 in barge canals near

Edinburgh. He reported his results in Trans. R. Soc. Edinburgh 14 (1840): 47–109.
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Thus,
uxxx = cux − uux; that is, uxxx + uux = cux.

Hence, ut + uxxx + uux = ut + cux = 0.

(b) The speed of the soliton is c, because u(x+ ct, t) = u(x, 0). The soliton
is higher and thinner when c is larger. Its shape at time t = 10 is shown in
Figure 3.1.1. �

Supplement 3.3
Max Planck and The Principle of Least
Action

In the 250 years after Maupertuis formulated his principle, this principle
of least action has been found to be a “theoretical basis” for Newton’s
law of gravity, Maxwell’s equations for electromagnetism, Schrøodinger’s
equation of quantum mechanics, and Einstein’s field equation in general
relativity.

Max Planck (see Figure 3.3.1), one of the greatest scientists of the mod-
ern era and the discoverer of the “quantization” of nature, was also a
profound believer in the mathematical design of the universe. On June 29,
1922, on “Leibniz Day” in Berlin, Germany, just a few years after World
War I, with all its terrible carnage, Planck delivered an address honoring
this great scholar.

What follows are some excerpts from Planck’s remarks:
The Theodicy culminates with the statement that whatever occurs in

our world, in the large as in the small, in nature as in spiritual life, is
once and for all regulated by divine reason, and in such a way that our
world is the best among possible worlds. Would Leibniz reaffirm this
statement even today, in view of the misery of the present time, in view of
the bitter failure of many efforts not immediately aimed at material gain,
in view of the undeniable fact that the imagined general harmony of people
today seems to be further away from its realization than ever? No doubt,
we should have to answer this question in the affirmative, even if we did
not know that Leibniz never ceased to earnestly occupy himself until his
last years despite an adverse fate and disappointments of all kinds, and we
shall hardly err in assuming that it was exactly the Theodicy that gave him
support and comfort in the most sorrowful days of his life. This once again
is a touching example of the old truth that our most profound and most
sacred principles are firmly rooted in our innermost soul, independent of
experiences in the outer world.

Modern science, in particular under the influence of the development
of the notion of causality, has moved far away from Leibniz’s teleological
point of view. Science has abandoned the assumption of a special, anticipat-
ing reason, and it considers each event in the natural and spiritual world,
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Figure 3.3.1. Max Planck (1858–1947).
at least in principle, as reducible to prior states. But still we notice a fact,
particularly in the most exact science, which, at least in this context, is
most surprising. Present-day physics, as far as it is theoretically organized,
is completely governed by a system of space–time differential equations
which state that each process in nature is totally determined by the events
which occur in its immediate temporal and spatial neighborhood. This en-
tire rich system of differential equations, though they differ in detail, since
they refer to mechanical, electric, magnetic, and thermal processes, is now
completely contained in a single dictum—the principle of least action. This,
in short, states that, of all possible processes, the only ones that actually
occur are those that involve minimum expenditure of action. As we can see,
only a short step is required to recognize in the preference for the smallest
quantity of action the ruling of divine reason, and thus to discover a part
of Leibniz’s teleological ordering of the universe.5

In present-day physics the principle of least action plays a relatively
minor role. It does not quite fit into the framework of present theories.
Of course, admittedly it is a correct statement; yet usually it serves not
as the foundation of the theory, but as a true but dispensable appendix,
because present theoretical physics is entirely tailored to the principle of
infinitesimal local effects, and sees extensions to larger spaces and times as
an unnecessary and uneconomical complication of the method of treatment.
Hence, physics is inclined to view the principle of least action more as a
formal and accidental curiosity than as a pillar of physical knowledge.

There is much more to the story of the least action principle, which we
will revisit in Section 4.1 and in the internet supplement.2

2For more information and history, consult S. Hildebrandt and A. J. Tromba, The

Parsimonious Universe: Shape and Form in the Natural World, Springer-Verlag, New
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Supplement 3.4A
Second Derivative Test: Constrained Extrema

In this supplement, we prove Theorem 10 in §3.4. We begin by recalling
the statement from the main text.

Theorem 10. Let f : U ⊂ R2 → R and g : U ⊂ R2 → R be smooth (at
least C2) functions. Let v0 ∈ U, g(v0) = c, and let S be the level curve for
g with value c. Assume that ∇g(v0) 6= 0 and that there is a real number λ
such that ∇f(v0) = λ∇g(v0). Form the auxiliary function h = f − λg and
the bordered Hessian determinant

|H̄| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −∂g
∂x

−∂g
∂y

−∂g
∂x

∂2h

∂x2

∂2h

∂x∂y

−∂g
∂y

∂2h

∂x∂y

∂2h

∂y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
evaluated atv0.

(i) If |H̄| > 0, then v0 is a local maximum point for f |S.

(ii) If |H̄| < 0, then v0 is a local minimum point for f |S.

(iii) If |H̄| = 0, the test is inconclusive and v0 may be a minimum, a
maximum, or neither.

The proof proceeds as follows. According to the remarks following the
Lagrange multiplier theorem, the constrained extrema of f are found by
looking at the critical points of the auxiliary function

h(x, y, λ) = f(x, y)− λ(g(x, y)− c).

Suppose (x0, y0, λ) is such a point and let v0 = (x0, y0). That is,

∂f

∂x

∣∣∣∣
v0

= λ
∂g

∂x

∣∣∣∣
v0

,
∂f

∂y

∣∣∣∣
v0

= λ
∂g

∂y

∣∣∣∣
v0

, and g(x0, y0) = c.

In a sense this is a one-variable problem. If the function g is at all reason-
able, then the set S defined by g(x, y) = c is a curve and we are interested
in how f varies as we move along this curve. If we can solve the equation
g(x, y) = c for one variable in terms of the other, then we can make this
explicit and use the one-variable second-derivative test. If ∂g/∂y|v0

6= 0,
then the curve S is not vertical at v0 and it is reasonable that we can solve

York/Berlin, 1995.
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for y as a function of x in a neighborhood of x0. We will, in fact, prove this
in §3.5 on the implicit function theorem. (If ∂g/∂x|v0

6= 0, we can similarly
solve for x as a function of y.)

Suppose S is the graph of y = φ(x). Then f |S can be written as a
function of one variable, f(x, y) = f(x, φ(x)). The chain rule gives

df

dx
=
∂f

∂x
+
∂f

∂y

dφ

dx
and

d2f

dx2
=
∂2f

∂x2
+ 2

∂2f

∂x∂y

dφ

dx
+
∂2f

∂y2

(
dφ

dx

)2

+
∂f

∂y

d2φ

dx2
.

 (1)

The relation g(x, φ(x)) = c can be used to find dφ/dx and d2φ/dx2. Differ-
entiating both sides of g(x, φ(x)) = c with respect to x gives

∂g

∂x
+
∂g

∂y

dφ

dx
= 0

and
∂2g

∂x2
+ 2

∂2g

∂x∂y

dφ

dx
+
∂2g

∂y2

(
dφ

dx

)2

+
∂g

∂y

d2φ

dx2
= 0,

so that

dφ

dx
= −∂g/∂x

∂g/∂y
and

d2φ

dx2
= − 1

∂g/∂y

[
∂2g

∂x2
− 2

∂2g

∂x∂y

∂g/∂x

∂g∂y
+
∂2g

∂y2

(
∂g/∂x

∂g/∂y

)2
]
.


(2)

Substituting equation (7) into equation (6) gives

df

dx
=
∂f

∂x
− ∂f/∂y

∂g/∂y

∂g

∂x
and

d2f

dx2
=

1

(∂g/∂y)2

{[
d2f

dx2
− ∂f/∂y

∂g/∂y

∂2g

∂x2

](
∂g

∂y

)2

−2

[
∂2f

∂x∂y
− ∂f/∂y

∂g/∂y

∂2g

∂x∂y

]
∂g

∂x

∂g

∂y

+

[
∂2f

∂y2
− ∂f/∂y

∂g/∂y

∂2g

∂y2

](
∂g

∂x

)2
}
.



(3)

At v0, we know that ∂f/∂y = λ∂g/∂y and ∂f/∂x = λ∂g/∂x, and so
equation (3) becomes

df

dx

∣∣∣∣
x0

=
∂f

∂x

∣∣∣∣
x0

− λ ∂g

∂x

∣∣∣∣
x0

= 0
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and

d2f

dx2

∣∣∣∣
x0

=
1

(∂g/∂y)2

[
∂2h

∂x2

(
∂g

∂y

)2

− 2
∂2h

∂x∂y

∂g

∂x

∂g

∂y
+
∂2h

∂y2

(
∂g

∂x

)2
]

= − 1

(∂g/∂y)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −∂g
∂x

−∂g
∂y

−∂g
∂x

∂2h

∂x2

∂2h

∂x∂y

−∂g
∂y

∂2h

∂x∂y

∂2h

∂y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where the quantities are evaluated at x0 and h is the auxiliary function
introduced above. This 3×3 determinant is, as in the statement of Theorem
10, called a bordered Hessian, and its sign is opposite that of d2f/dx2.
Therefore, if it is negative, we must be at a local minimum. If it is positive,
we are at a local maximum; and if it is zero, the test is inconclusive.

Exercises.

1. Take the special case of the theorem in which g(x, y) = y, so that
the level curve g(x, y) = c with c = 0 is the x-axis. Does Theorem 10
reduce to a theorem you know from one-variable Calculus?

2. Show that the bordered Hessian of f(x1, . . . , xn) subject to the single
constraint g(x1, . . . , xn) = c is the Hessian of the function

f(x1, . . . , xn)− λg(x1, . . . , xn)

of the n + 1 variables λ, x1, . . . , xn (evaluated at the critical point).
Can you use this observation to give another proof of the constrained
second-derivative test using the unconstrained one? HINT: If λ0 de-
notes the value of λ determined by the Lagrange multiplier theorem,
consider the function

F (x1, . . . , xn, λ) = f(x1, . . . , xn)− λg(x1, . . . , xn)± (λ− λ0)2.
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Supplement 3.4B
Proof of the Implicit Function Theorem

We begin by recalling the statement.

Theorem 11. Special Implicit Function Theorem. Suppose that the
function F : Rn+1 → R has continuous partial derivatives. Denoting points
in Rn+1 by (x, z), where x ∈ Rn and z ∈ R, assume that (x0, z0) satisfies

F (x0, z0) = 0 and
∂F

∂z
(x0, z0) 6= 0.

Then there is a ball U containing x0 in Rn and a neighborhood V of z0 in
R such that there is a unique function z = g(x) defined for x in U and z
in V that satisfies F (x, g(x)) = 0. Moreover, if x in U and z in V satisfy
F (x, z) = 0, then z = g(x). Finally, z = g(x) is continuously differentiable,
with the derivative given by

Dg(x) = − 1

∂F

∂z
(x, z)

DxF (x, z)

∣∣∣∣∣∣∣
z=g(x)

where DxF denotes the derivative matrix of F with respect to the variable
x, that is,

DxF =

[
∂F

∂x1
, . . . ,

∂F

∂xn

]
;

in other words,
∂g

∂xi
= −∂F/∂xi

∂F/∂z
, i = 1, . . . , n. (1)

We shall prove the case n = 2, so that F : R3 → R. The case for general
n is done in a similar manner. We write x = (x, y) and x0 = (x0, y0).
Since (∂F/∂z)(x0, y0, z0) 6= 0, it is either positive or negative. Suppose for
definiteness that it is positive. By continuity, we can find numbers a > 0 and
b > 0 such that if ‖x−x0‖ < a and |z−z0| < a, then (∂F/∂z)(x, z) > b. We
can also assume that the other partial derivatives are bounded by a number
M in this region, that is, |(∂F/∂x)(x, z)| ≤ M and |(∂F/∂y)(x, z)| ≤ M ,
which also follows from continuity. Write F (x, z) as follows

F (x, z) = F (x, z)− F (x0, z0)

= [F (x, z)− F (x0, z)] + [F (x0, z)− F (x0, z0)]. (2)

Consider the function

h(t) = F (tx + (1− t)x0, z)
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for fixed x and z. By the mean value theorem, there is a number θ between
0 and 1 such that

h(1)− h(0) = h′(θ)(1− 0) = h′(θ),

that is, θ is such that

F (x, z)− F (x0, z) = [DxF (θx + (1− θ)x0, z)](x− x0).

Substitution of this formula into equation (2) along with a similar formula
for the second term of that equation gives

F (x, z) = [DxF (θx + (1− θ)x0, z)](x− x0)

+

[
∂F

∂z
(x0, φz + (1− φ)z0)

]
(z − z0). (3)

where φ is between 0 and 1. Let a0 satisfy 0 < a0 < a and choose δ > 0
such that δ < a0 and δ < ba0/2M . If |x − x0| < δ then both |x − x0| and
|y− y0| are less than δ, so that the absolute value of each of the two terms
in

[DxF (θx + (1− θ)x0, z)](x− x0)

=

[
∂F

∂x
(θx + (1− θ)x0, z)

]
(x− x0) +

[
∂F

∂y
(θx + (1− θ)x0, z)

]
(y − y0)

is less than Mδ < M(ba0/2M) = ba0/2. Thus, |x− x0| < δ implies

|[DxF (θx + (1− θ)x0, z)](x− x0)| < ba0.

Therefore, from equation (3) and the choice of b, ‖x−x0‖ < δ implies that

F (x, z0 + a0) > 0 and F (x, z0 − a0) < 0.

[The inequalities are reversed if (∂F/∂z)(x0, z0) < 0.] Thus, by the inter-
mediate value theorem applied to F (x, z) as a function of z for each x,
there is a z between z0 − a0 and z0 + a0 such that F (x, z) = 0. This z is
unique, since, by elementary calculus, a function with a positive derivative
is strictly increasing and thus can have no more than one zero.

Let U be the open ball of radius δ and center x0 in R2 and let V be the
open interval on R from z0 − a0 to z0 + a0. We have proved that if x is
confined to U , there is a unique z in V such that F (x, z) = 0. This defines
the function z = g(x) = g(x, y) required by the theorem. We leave it to
the reader to prove from this construction that z = g(x, y) is a continuous
function.

It remains to establish the continuous differentiability of z = g(x). From
equation (3), and since F (x, z) = 0 and z0 = g(x0), we have

g(x)− g(x0) = − [DxF (θx + (1− θ)x0, z)](x− x0)

∂F

∂z
(x0, φz + (1− φ)z0)

.
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If we let x = (x0 + h, y0) then this equation becomes

g(x0 + h, y0)− g(x0, y0)

h
= −

∂F

∂x
(θx + (1− θ)x0, z)

∂F

∂z
(x0, φz + (1− φ)z0)

.

As h→ 0, it follows that x→ x0 and z → z0, and so we get

∂g

∂x
(x0, y0) = lim

h→0

g(x0 + h, y0)− g(x0, y0)

h
= −

∂F

∂x
(x0, z)

∂F

∂z
(x0, z)

.

The formula

∂g

∂y
(x0, y0) = −

∂F

∂y
(x0, z)

∂F

∂z
(x0, z)

is proved in the same way. This derivation holds at any point (x, y) in
U by the same argument, and so we have proved formula (1). Since the
right-hand side of formula (1) is continuous, we have proved the theorem.
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4
Vector Valued Functions

I don’t know what I may seem to the world, but, as to myself,
I seem to have been only like a boy playing on the sea-shore,
and diverting myself in now and then finding a smoother pebble
or a prettier shell than ordinary, whilst the great ocean of truth
lay all undiscovered before me.

Isaac Newton, shortly before his death in 1727

Supplement 4.1A
Equilibria in Mechanics

Let F denote a force field defined on a certain domain U of R3. Thus,
F : U → R3 is a given vector field. Let us agree that a particle (with mass
m) is to move along a path c(t) in such a way that Newton’s law holds;
mass × acceleration = force; that is, the path c(t) is to satisfy the equation

mc′′(t) = F(c(t)). (1)

If F is a potential field with potential V , that is, if F = −∇V , then

1

2
m‖c′(t)‖2 + V (c(t)) = constant. (2)
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(The first term is called the kinetic energy.) Indeed, by differentiating
the left side of (2) using the chain rule

d

dt

[
1

2
m‖c′(t)‖2 + V (c(t))

]
= mc′(t) · c′′(t) +∇V (c(t)) · c′(t)

= [mc′′(t) +∇V (c(t))] · c′(t) = 0.

since mc′′(t) = −∇V (c(t)). This proves formula (2).

Definition. A point x0 ∈ U is called a position of equilibrium if the
force at that point is zero: F : (x0) = 0. A point x0 that is a position
of equilibrium is said to be stable if for every ρ > 0 and ε > 0, we can
choose numbers ρ0 > 0 and ε0 > 0 such that a point situated anywhere at
a distance less that ρ0 from x0, after initially receiving kinetic energy in
an amount less than ε0, will forever remain a distance from x0 less then ρ
and possess kinetic energy less then ε (see Figure 4.1.1).

X0

X

ρ0

ρ

Figure 4.1.1. Motion near a stable point x0.

Thus if we have a position of equilibrium, stability at x0 means that a
slowly moving particle near x0 will always remain near x0 and keep moving
slowly. If we have an unstable equilibrium point x0, then c(t) = x0 solves
the equation mc′′(t) = F(c(t)), but nearby solutions may move away from
x0 as time progresses. For example, a pencil balancing on its tip illustrates
an unstable configuration, whereas a ball hanging on a spring illustrates a
stable equilibrium.

Theorem 1.

(i) Critical points of a potential are the positions of equilibrium.

(ii) In a potential field, a point x0 at which the potential takes a strict local
minimum is a position of stable equilibrium. (Recall that a function f
is said to have a strict local minimum at the point x0 if there exists
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a neighborhood U of x0 such that f(x) > f(x0) for all x in U other
than x0.)

Proof. The first assertion is quite obvious from the definition F = −∇V ;
equilibrium points x0 are exactly critical points of V , at which∇V (x0) = 0.

To prove assertion (ii), we shall make use of the law of conservation of
energy, that is, equation (2). We have

1

2
m‖c′(t)‖2 + V (c(t)) =

1

2
m‖c′(t)‖2 + V (c(0)).

We shall argue slightly informally to amplify and illuminate the central
ideas involved. Let us choose a small neighborhood of x0 and start our par-
ticle with a small kinetic energy. As t increases, the particle moves away
from x0 on a path c(t) and V (c(t)) increases [since V (x0) = V (c(0)) is
a strict minimum], so that the kinetic energy must decrease. If the initial
kinetic energy is sufficiently small, then in order for the particle to escape
from our neighborhood of x0, outside of which V has increased by a defi-
nite amount, the kinetic energy would have to become negative (which is
impossible). Thus the particle cannot escape the neighborhood. �

Example 1. Find the points that are positions of equilibrium, and de-
termine whether or not they are stable, if the force field F = Fxi+Fyj+Fzk
is given by Fx = −k2x, Fy = −k2y, Fz = −k2z(k 6= 0). 1

Solution. The force field F is a potential field with potential given by
the function V = 1

2k
2(x2 + y2 + z2). The only critical point of V is at

the origin. The Hessian of V at the origin is 1
2k

2(h2
1 + h2

2 + h2
3), which is

positive-definite. It follows that the origin is a strict minimum of V . Thus,
by (i) and (ii) of Theorem 1, we have shown that the origin is a position of
stable equilibrium. �

Let a point in a potential field V be constrained to remain on the level
surface S given by the equation φ(x, y, z) = 0, with ∇φ 6= 0. If in formula
(1) we replace F by the component of F parallel to S, we ensure that the
particle will remain on S.2 By analogy with Theorem 1, we have:

Theorem 2.

(i) If at a point P on the surface S the potential V |S has an extreme
value, then the point P is a position of equilibrium on the surface.

1The force field in this example is that governing the motion of a three-dimensional

harmonic oscillator.
2If φ(x, y, z) = x2 + y2 + z2 − r2, the particle is constrained to move on a sphere; for

instance, it may be whirling on a string. The part subtracted from F to make it parallel

to S is normal to S and is called the centripetal force.
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(ii) If a point P ∈ S is a strict local minimum of the potential V |S, then
the point P is a position of stable equilibrium.

The proof of this theorem will be omitted. It is similar to the proof of
Theorem 1., with the additional fact that the equation of motion uses only
the component of F along the surface. 3

Example 2. Let F be the gravitational field near the surface of the earth;
that is, let F = (Fx, Fy, Fz), where Fx = 0, Fy = 0, and Fz = −mg, where
g is the acceleration due to gravity. What are the positions of equilibrium,
if a particle with mass m is constrained to the sphere φ(x, y, z) = x2 +y2 +
z2 − r2 = 0(r > 0)? Which of these are stable?

Solution. Notice that F is a potential field with V = mgz. Using the
method of Lagrange multipliers introduced in §3.4 to locate the possible
extrema, we have the equations

∇V = λ∇φ
φ = 0

or, in terms of components,

0 = 2λx

0 = 2λy

mg = 2λz

x2 + y2 + z2 − r2 = 0.

The solution of these simultaneous equations is x = 0, y = 0, z = ±r, λ =
±mg/2r. By Theorem 2, it follows that the points P1(0, 0,−r) and P2 =
(0, 0, r) are positions of equilibrium. By observation of the potential func-
tion V = mgz and by Theorem 2, part (ii), it follows that P1 is a strict
minimum and hence a stable point, whereas P2 is not. This conclusion
should be physically obvious.

�

Exercises.

1. Let a particle move in a potential field in R2 given by V (x, y) =
3x2 + 2xy + y2 + y + 4. Find the stable equilibrium points, if any.

3These ideas can be applied to quite a number of interesting physical situations, such

as molecular vibrations. The stability of such systems is an important question. For

further information consult the physics literature (e.g. H. Goldstein, Classical Mechanics,
Addison-Wesley, Reading, Mass., 1950, Chapter 10) and the mathematics literature (e.g.

M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra,

Academic Press, New York 1974).
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2. Let a particle move in a potential field in R2 given by V (x, y) =
x2 − 2xy + y2 + y3 + y4. Is the point (0, 0) a position of a stable
equilibrium?

3. (The solution is given at the end of this Internet Supplement). Let
a particle move in a potential field in R2 given by V (x, y) = x2 −
4xy−y2−8x−6y. Find all the equilibrium points. Which, if any, are
stable?

4. Let a particle be constrained to move on the circle x2 + y2 = 25
subject to the potential V = V1 + V2, where V1 is the gravitational
potential in Example 2, and V2(x, y) = x2 + 24xy + 8y2. Find the
stable equilibrium points, if any.

5. Let a particle be constrained to move on the sphere x2 + y2 + z2 = 1,
subject to the potential V = V1 + V2, where V1 is the gravitational
potential in Example 2, and V2(x, y) = x + y. Find the stable equi-
librium points, if any.

6. Attempt to formulate a definition and a theorem saying that if a
potential has a maximum at x0, then x0 is a position of unstable
equilibrium. Watch out for pitfalls in your argument.
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Supplement 4.1B
Rotations and the Sunshine Formula

In this supplement we use vector methods to derive formulas for the position
of the sun in the sky as a function of latitude and the day of the year.4

To motivate this, have a look at the fascinating Figure 4.1.12 below which
gives a plot of the length of day as a function of one’s latitude and the day
of the year. Our goal in this supplement is to use vector methods to derive
this formula and to discuss related issues.

This is a nice application of vector calculus ideas because it does not in-
volve any special technical knowledge to understand and is something that
everyone can appreciate. While it is not trivial, it also does not require any
particularly advanced ideas—it mainly requires patience and perseverance.
Even if one does not get all the way through the details, one can learn a
lot about rotations along the way.

A Bit About Rotations. Consider two unit vectors l and r in space
with the same base point. If we rotate r about the axis passing through l,
then the tip of r describes a circle (Figure 4.1.2). (Imagine l and r glued
rigidly at their base points and then spun about the axis through l.) Assume
that the rotation is at a uniform rate counterclockwise (when viewed from
the tip of l), making a complete revolution in T units of time. The vector
r now is a vector function of time, so we may write r = c(t). Our first
aim is to find a convenient formula for c(t) in terms of its starting position
r0 = c(0).

l

r

Figure 4.1.2. If r rotates about l, its tip describes a circle.

Let λ denote the angle between l and r0; we can assume that λ 6= 0 and
λ 6= π, i .e., l and r0 are not parallel, for otherwise r would not rotate. In

4This material is adapted from Calculus I, II, III by J. Marsden and A. Weinstein,

Springer-Verlag, New York, which can be referred to for more information and some

interesting historical remarks. See also Dave Rusin’s home page http://www.math.niu.

edu/~rusin/ and in particular his notes on the position of the sun in the sky at http://

www.math.niu.edu/~rusin/uses-math/position.sun/ We thank him for his comments

on this section.

http://www.math.niu.edu/~rusin/
http://www.math.niu.edu/~rusin/
http://www.math.niu.edu/~rusin/uses-math/position.sun/
http://www.math.niu.edu/~rusin/uses-math/position.sun/
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fact, we shall take λ in the open interval (0, π). Construct the unit vector
m0 as shown in Figure 4.1.3. From this figure we see that

r0 = (cosλ)l + (sinλ)m0. (1)

l
r
0

m
0

λ
π/2 − λ

Figure 4.1.3. The vector m0 is in the plane of r0 and l, is orthogonal to l, and makes

an angle of (π/2)− λ with r0.

In fact, formula (1) can be taken as the algebraic definition of m0 by
writing m0 = (1/ sinλ)r0 − (cosλ/ sinλ)l. We assumed that λ 6= 0, and
λ 6= π, so sinλ 6= 0.

Now add to this figure the unit vector n0 = l ×m0. (See Figure 4.1.4.)
The triple (l,m0,n0) consists of three mutually orthogonal unit vectors,
just like (i, j,k).

l
r

0

m
0

π/2 – λ
λ

n
0

Figure 4.1.4. The triple (l,m0,n0) is a right-handed orthogonal set of unit vectors.

Example 1. Let l = (1/
√

3)(i + j + k) and r0 = k. Find m0 and n0.

Solution. The angle between l and r0 is given by cosλ = l · r0 = 1/
√

3.
This was determined by dotting both sides of formula (1) by l and using
the fact that l is a unit vector. Thus, sinλ =

√
1− cos2 λ =

√
2/3, and so

from formula (1) we get

m0 =
1

sinλ
c(0)− cosλ

sinλ
l

=

√
3

2
k− 1√

3

√
3

2
· 1√

3
(i + j + k) =

2√
6
k− 1√

6
(i + j)
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and

n0 = l×m0 =

∣∣∣∣∣∣∣∣∣∣

i j k

1√
3

1√
3

1√
3

− 1√
6
− 1√

2
− 2√

6

∣∣∣∣∣∣∣∣∣∣
=

1√
2
i− 2√

2
j. �

Return to Figure 4.1.4 and rotate the whole picture about the axis l. Now
the “rotated” vectors m and n will vary with time as well. Since the angle
λ remains constant, formula (1) applied after time t to r and l gives (see
Figure 4.1.5)

m =
1

sinλ
r− cosλ

sinλ
l (2)

l
v

m
n

Figure 4.1.5. The three vectors v,m, and n all rotate about l.

On the other hand, since m is perpendicular to l, it rotates in a circle in
the plane of m0 and n0. It goes through an angle 2π in time T, so it goes
through an angle 2πt/T in t units of time, and so

m = cos

(
2πt

T

)
m0 + sin

(
2πt

T

)
n0.

Inserting this in formula (2) and rearranging gives

r(t) = (cosλ)l + sinλ cos

(
2πt

T

)
m0 + sinλ sin

(
2πt

T

)
n0. (3)

This formula expresses explicitly how r changes in time as it is rotated
about l, in terms of the basic vector triple (l,m0,n0).

Example 2. Express the function c(t) explicitly in terms of l, r0, and T .

Solution. We have cosλ = l · r0 and sinλ = ‖l× r0‖. Furthermore n0 is
a unit vector perpendicular to both l and r0, so we must have (up to an
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orientation)

n0 =
l× r0

‖l× r0‖
.

Thus (sinλ)n0 = l × r0. Finally, from formula (1), we obtain (sinλ)m0 =
r0 − (cosλ)l = r0 − (r0 · l)l. Substituting all this into formula (3),

r = (r0 · l)l + cos

(
2πt

T

)
[r0 − (r0 · l)l] + sin

(
2πt

T

)
(l× r0). �

Example 3. Show by a direct geometric argument that the speed of the
tip of r is (2π/T ) sinλ. Verify that equation (3) gives the same formula.

Solution. The tip of r sweeps out a circle of radius sinλ, so it covers a
distance 2π sinλ in time T. Its speed is therefore (2π sinλ)/T (Figure 4.1.6).

l

r
sin λ

λ

Figure 4.1.6. The tip of r sweeps out a circle of radius sinλ.

From formula (3), we find the velocity vector to be

dr

dt
= − sinλ · 2π

T
sin

(
2πt

T

)
m0 + sinλ · 2π

T
cos

(
2πt

T

)
n0,

and its length is (since m0 and n0 are unit orthogonal vectors)

∥∥∥∥drdt
∥∥∥∥ =

√
sin2 λ ·

(
2π

T

)2

sin2

(
2πt

T

)
+ sin2 λ ·

(
2π

T

)2

cos2

(
2πt

T

)
= sinλ ·

(
2π

T

)
,

as above. �
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Rotation and Revolution of the Earth. Now we apply our study
of rotations to the motion of the earth about the sun, incorporating the
rotation of the earth about its own axis as well. We will use a simplified
model of the earth-sun system, in which the sun is fixed at the origin of our
coordinate system and the earth moves at uniform speed around a circle
centered at the sun. Let u be a unit vector pointing from the sun to the
center of the earth; we have

u = cos(2πt/Ty)i + sin(2πt/Ty)j

where Ty is the length of a year (t and Ty measured in the same units).
See Figure 4.1.7. Notice that the unit vector pointing from the earth to the
sun is −u and that we have oriented our axes so that u = i when t = 0.

–u

u

i

j

k

Figure 4.1.7. The unit vector u points from the sun to the earth at time t.

Next we wish to take into account the rotation of the earth. The earth
rotates about an axis which we represent by a unit vector l pointing from
the center of the earth to the North Pole. We will assume that l is fixed5

with respect to i, j, and k; astronomical measurements show that the incli-
nation of l (the angle between l and k) is presently about 23.5◦. We will
denote this angle by α. If we measure time so that the first day of summer
in the northern hemisphere occurs when t = 0, then the axis l tilts in the
direction −i, and so we must have l = cosαk− sinαi. (See Figure 4.1.8)

Now let r be the unit vector at time t from the center of the earth to a
fixed point P on the earth’s surface. Notice that if r is located with its base

5Actually, the axis l is known to rotate about k once every 21, 000 years. This phe-
nomenon called precession or wobble, is due to the irregular shape of the earth and may
play a role in long-term climatic changes, such as ice ages. See pages. 130-134 of The

Weather Machine by Nigel Calder, Viking (1974).
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Figure 4.1.8. At t = 0, the earth’s axis tilts toward the sun by the angle α.

point at P, then it represents the local vertical direction. We will assume
that P is chosen so that at t = 0, it is noon at the point P ; then r lies in
the plane of l and i and makes an angle of less than 90◦ with −i. Referring
to Figure 4.1.9, we introduce the unit vector m0 = −(sinα)k − (cosα)i
orthogonal to l. We then have r0 = (cosλ)l+(sinλ)m0, where λ is the angle
between l and r0. Since λ = π/2− `, where ` is the latitude of the point P,
we obtain the expression r0 = (sin `)l + (cos `)m0. As in Figure 4.1.4, let
n0 = l×m0.

Example 4. Prove that n0 = l×m0 = −j.

Solution. Geometrically, l×m0 is a unit vector orthogonal to l and m0

pointing in the sense given by the right-hand rule. But l and m0 are both
in the i − k plane, so l ×m0 points orthogonal to it in the direction −j.
(See Figure 4.1.9).

Algebraically, l = (cosα)k− (sinα)i and m0 = −(sinα)k− (cosα)i, so

l×m0 =

 i j k
− sinα 0 cosα
− cosα 0 − sinα

 = −j(sin2 α+ cos2 α) = −j. �

Now we apply formula (3) to get

r = (cosλ)l + sinλ cos

(
2πt

Td

)
m0 + sinλ sin

(
2πt

Td

)
n0,
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Figure 4.1.9. The vector r is the vector from the center of the earth to a fixed location

P. The latitude of P is l and the colatitude is λ = 90◦ − `. The vector m0 is a unit

vector in the plane of the equator (orthogonal to l) and in the plane of l and r0.

where Td is the length of time it takes for the earth to rotate once about
its axis (with respect to the “fixed stars”—i.e., our i, j,k vectors). 6 Sub-
stituting the expressions derived above for λ, l,m0, and n0, we get

r = sin `(cosαk− sinα i)

+ cos ` cos

(
2πt

Td

)
(− sinαk− cosα i)− cos ` sin

(
2πt

Td

)
j.

Hence

r =−
[
sin ` sinα+ cos ` cosα cos

(
2πt

Td

)]
i− cos ` sin

(
2πt

Td

)
j

+

[
sin ` cosα− cos ` sinα cos

(
2πt

Td

)]
k. (4)

Example 5. What is the speed (in kilometers per hour) of a point on
the equator due to the rotation of the earth? A point at latitude 60 ◦? (The
radius of the earth is 6371 kilometers.)

Solution. The speed is

s = (2πR/Td) sinλ = (2πR/Td) cos `,

where R is the radius of the earth and ` is the latitude. (The factor R is
inserted since r is a unit vector, the actual vector from the earth’s center
to a point P on its surface is Rr).

6Td is called the length of the sidereal day. It differs from the ordinary, or solar,

day by about 1 part in 365 because of the rotation of the earth about the sun. In fact,

Td ≈ 23.93 hours.
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Using Td = 23.93 hours and R = 6371 kilometers, we get s = 1673 cos `
kilometers per hour. At the equator ` = 0, so the speed is 1673 kilometers
per hour; at ` = 60◦, s = 836.4 kilometers per hour. �

With formula (3) at our disposal, we are ready to derive the sunshine
formula. The intensity of light on a portion of the earth’s surface (or at
the top of the atmosphere) is proportional to sinA, where A is the angle
of elevation of the sun above the horizon (see Fig. 4.1.10). (At night sinA
is negative, and the intensity then is of course zero.)

A 2

1

sunlight

Figure 4.1.10. The intensity of sunlight is proportional to sinA. The ratio of area 1

to area 2 is sinA.

Thus we want to compute sinA. From Figure 4.1.11 we see that sinA =
−u · r. Substituting u = cos(2πt/Ty)i + sin(2πt/Ty)j and formula (3) into
this formula for sinA and taking the dot product gives

sinA = cos

(
2πt

Ty

)[
sin ` sinα+ cos ` cosα cos

(
2πt

Td

)]
+ sin

(
2πt

Ty

)[
cos ` sin

(
2πt

Td

)]
= cos

(
2πt

Ty

)
sin ` sinα+ cos `

[
cos

(
2πt

Ty

)
cosα cos

(
2πt

Td

)
+ sin

(
2πt

Ty

)
sin

(
2πt

Td

)]
. (5)

Example 6. Set t = 0 in formula (4). For what ` is sinA = 0? Interpret
your result.

Solution. With t = 0 we get

sinA = sin ` sinα+ cos ` cosα = cos(`− α).

This is zero when ` − α = ±π/2. Now sinA = 0 corresponds to the sun
on the horizon (sunrise or sunset), when A = 0 or π. Thus, at t = 0, this
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Figure 4.1.11. The geometry for the formula sinA = cos(90◦ −A) = −u · r.

occurs when ` = α ± (π/2). The case α + (π/2) is impossible, since ` lies
between −π/2 and π/2. The case ` = α− (π/2) corresponds to a point on
the Antarctic Circle; indeed at t = 0 (corresponding to noon on the first
day of northern summer) the sun is just on the horizon at the Antarctic
Circle. �

Our next goal is to describe the variation of sinA with time on a par-
ticular day. For this purpose, the time variable t is not very convenient;
it will be better to measure time from noon on the day in question. To
simplify our calculations, we will assume that the expressions cos(2πt/Ty)
and sin(2πt/Ty) are constant over the course of any particular day; since Ty
is approximately 365 times as large as the change in t, this is a reasonable
approximation. On the nth day (measured from June 21), we may replace
2πt/Ty by 2πn/365, and formula (4.1.4) gives

sinA = (sin `)P + (cos `)

[
Q cos

(
2πt

Td

)
+R sin

(
2πt

Td

)]
,

where

P = cos(2πn/365) sinα,Q = cos(2πn/365) cosα, and R = sin(2πn/365).

We will write the expression Q cos(2πt/Td) + R sin(2πt/Td) in the form
U cos[2π(t − tn)/Td], where tn is the time of noon of the nth day. To find
U, we use the addition formula to expand the cosine:

U cos

[(
2πt

Td

)
−
(

2πtn
Td

)]
= U

[
cos

(
2πt

Td

)
cos

(
2πtn
Td

)
+ sin

(
2πt

Td

)
sin

(
2πtn
Td

)]
.

Setting this equal to Q cos(2πt/Td) + R sin(2πt/Td) and comparing coeffi-
cients of cos 2πt/Td and sin 2πt/Td gives

U cos
2πtn
Td

= Q and U sin
2πtn
Td

= R.
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Squaring the two equations and adding gives7

U2 = Q2 +R2 or U =
√
Q2 +R2,

while dividing the second equation by the first gives tan(2πtn/Td) = R/Q.
We are interested mainly in the formula for U ; substituting for Q and R
gives

U =

√
cos2

(
2πn

365

)
cos2 α+ sin2 2πn

365

=

√
cos2

(
2πn

365

)
(1− sin2 α) + sin2 2πn

365

=

√
1− cos2

(
2πn

365

)
sin2 α.

Letting τ be the time in hours from noon on the nth day so that τ/24 =
(t− tn)/Td, we substitute into formula (5) to obtain the final formula:

sinA = sin ` cos

(
2πn

365

)
sinα

+ cos `

√
1− cos2

(
2πn

365

)
sin2 α cos

2πτ

24
. (6)

Example 7. How high is the sun in the sky in Edinburgh (latitude 56 ◦)
at 2 p.m. on Feb. 1?

Solution. We plug into formula (6): α = 23.5,◦ ` = 90◦ − 56◦ = 34◦, n
= number of days after June 21 = 225, and τ = 2 hours. We get sinA =
0.5196, so A = 31.3.◦ �

Formula (4) also tells us how long days are.8 At the time S of sunset,
A = 0. That is,

cos

(
2πS

24

)
= − tan `

sinα cos(2πT/365)√
1− sin2 α cos2(2πT/365)

. (4.1.1)

7We take the positive square root because sinA should have a local maximum when
t = tn.

8If π/2 − α < |`| < π/2 (inside the polar circles), there will be some values of t for

which the right-hand side of formula (1) does not lie in the interval [−1, 1]. On the days
corresponding to these values of t, the sun will never set (“midnight sun”). If ` = ±π/2,
then tan ` =∞, and the right-hand side does not make sense at all. This reflects the fact

that, at the poles, it is either light all day or dark all day, depending upon the season.
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Solving for S, and remembering that S ≥ 0 since sunset occurs after noon,
we get

S =
12

π
cos−1

− tan `
sinα cos(2πT/365)√

1− sin2 α cos2(2πT/365)

 . (4.1.2)

The graph of S is shown in Figure 4.1.12.
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Figure 4.1.12. Day length as a function of latitude and day of the year.

Exercises.

1. Let l = (j + k)/
√

2 and r0 = (i− j)/
√

2.

(a) Find m0 and n0.

(b) Find r = c(t) if T = 24.

(c) Find the equation of the line tangent to c(t) at t = 12 and T = 24.

2. From formula (3), verify that c(T/2) ·n = 0. Also, show this geomet-
rically. For what values of t is c(t) · n = 0?

3. If the earth rotated in the opposite direction about the sun, would
Td be longer or shorter than 24 hours? (Assume the solar day is fixed
at 24 hours.)

4. Show by a direct geometric construction that

r = c(Td/4) = −(sin ` sinα)i− (cos `)j + (sin ` cosα)k.

Does this formula agree with formula (3)?
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5. Derive an “exact” formula for the time of sunset from formula (4).

6. Why does formula (6) for sinA not depend on the radius of the earth?
The distance of the earth from the sun?

7. How high is the sun in the sky in Paris at 3 p.m. on January 15?
(The latitude of Paris is 49◦ N.)

8. How much solar energy (relative to a summer day at the equator)
does Paris receive on January 15? (The latitude of Paris is 49◦ N).

9. How would your answer in Exercise 8 change if the earth were to roll
to a tilt of 32◦ instead of 23.5◦?
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Supplement 4.1C
The Principle of Least Action

By Richard Feynman9

When I was in high school, my physics teacher—whose name was Mr.
Bader—called me down one day after physics class and said, “You look
bored; I want to tell you something interesting.” Then he told me something
which I found absolutely fascinating, and have, since then, always found
fascinating. Every time the subject comes up, I work on it. In fact, when
I began to prepare this lecture I found myself making more analyses on
the thing. Instead of worrying about the lecture, I got involved in a new
problem. The subject is this—the principle of least action.

Mr. Bader told me the following: Suppose you have a particle (in a grav-
itational field, for instance) which starts somewhere and moves to some
other point by free motion—you throw it, and it goes up and comes down
(Figure 4.1.13).

here

there

t1

t2

actual motion

Figure 4.1.13.

It goes from the original place to the final place in a certain amount of
time. Now, you try a different motion. Suppose that to get from here to
there, it went like this (Figure 4.1.14)
but got there in just the same amount of time. Then he said this: If you
calculate the kinetic energy at every moment on the path, take away the
potential energy, and integrate it over the time during the whole path,
you’ll find that the number you’ll get is bigger then that for the actual
motion.

In other words, the laws of Newton could be stated not in the form F =
ma but in the form: the average kinetic energy less the average potential
energy is as little as possible for the path of an object going from one point
to another.

9Lecture 19 from The Feynman Lectures on Physics.
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here

there

t1

t2

imagined

 motion

Figure 4.1.14.

Let me illustrate a little bit better what it means. If you take the case of
the gravitational field, then if the particle has the path x(t) (let’s just take
one dimension for a moment; we take a trajectory that goes up and down
and not sideways), where x is the height above the ground, the kinetic
energy is 1

2m(dx/dt)2, and the potential energy at any time is mgx. Now I
take the kinetic energy minus the potential energy at every moment along
the path and integrate that with respect to time from the initial time to
the final time. Let’s suppose that at the original time t1 we started at some
height and at the end of the time t2 we are definitely ending at some other
place (Figure 4.1.15).

t1 t2 t

x

Figure 4.1.15.

Then the integral is ∫ t2

t1

[
1

2
m

(
dx

dt

)2

−mgx
]
dt.

The actual motion is some kind of a curve—it’s a parabola if we plot against
the time—and gives a certain value for the integral. But we could imagine
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some other motion that went very high and came up and down in some
peculiar way (Figure 4.1.16).

t1 t2 t

x

Figure 4.1.16.

We can calculate the kinetic energy minus the potential energy and inte-
grate for such a path. . . or for any other path we want. The miracle is that
the true path is the one for which that integral is least.

Let’s try it out. First, suppose we take the case of a free particle for
which there is no potential energy at all. Then the rule says that in going
from one point to another in a given amount of time, the kinetic energy
integral is least, so it must go at a uniform speed. (We know that’s the right
answer—to go at a uniform speed.) Why is that? Because if the particle
were to go any other way, the velocities would be sometimes higher and
sometimes lower then the average. The average velocity is the same for
every case because it has to get from ‘here’ to ‘there’ in a given amount of
time.

As and example, say your job is to start from home and get to school in
a given length of time with the car. You can do it several ways: You can
accelerate like mad at the beginning and slow down with the breaks near the
end, or you can go at a uniform speed, or you can go backwards for a while
and then go forward, and so on. The thing is that the average speed has got
to be, of course, the total distance that you have gone over the time. But if
you do anything but go at a uniform speed, then sometimes you are going
too fast and sometimes you are going too slow. Now the mean square of
something that deviates around an average, as you know, is always greater
than the square of the mean; so the kinetic energy integral would always be
higher if you wobbled your velocity than if you went at a uniform velocity.
So we see that the integral is a minimum if the velocity is a constant (when
there are no forces). The correct path is like this (Figure 4.1.17).

Now, an object thrown up in a gravitational field does rise faster first
and then slow down. That is because there is also the potential energy, and
we must have the least difference of kinetic and potential energy on the
average. Because the potential energy rises as we go up in space, we will
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t1 t2 t

x

here

there

no forces

Figure 4.1.17.

get a lower difference if we can get as soon as possible up to where there
is a high potential energy. Then we can take the potential away from the
kinetic energy and get a lower average. So it is better to take a path which
goes up and gets a lot of negative stuff from the potential energy (Figure
4.1.18).

t1 t2 t

x

here

there

more  + KE

more  – PE

Figure 4.1.18.

On the other hand, you can’t go up too fast, or too far, because you will
then have too much kinetic energy involved—you have to go very fast to
get way up and come down again in the fixed amount of time available. So
you don’t want to go too far up, but you want to go up some. So i turns
out that the solution is some kind of balance between trying to get more
potential energy with the least amount of extra kinetic energy—trying to
get the difference, kinetic minus the potential, as small as possible.

That is all my teacher told me, because he was a very good teacher and
knew when to stop talking. But I don’t know when to stop talking. So
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instead of leaving it as an interesting remark, I am going to horrify and
disgust you with the complexities of life by proving that it is so. The kind
of mathematical problem we will have is a very difficult and a new kind.
We have a certain quantity which is called the action, S. It is the kinetic
energy, minus the potential energy, integrated over time.

Action = S =

∫ t2

t1

(KE− PE)dt.

Remember that the PE and KE are both functions of time. For each dif-
ferent possible path you get a different number for this action. Our math-
ematical problem is to find out for what curve that number is the least.

You say—Oh, that’s just the ordinary calculus of maxima and minima.
You calculate the action and just differentiate to find the minimum.

But watch out. Ordinarily we just have a function of some variable, and
we have to find the value of what variable where the function is least or
most. For instance, we have a rod which has been heated in the middle and
the heat is spread around. For each point on the rod we have a temperature,
and we must find the point at which that temperature is largest. But now
for each path in space we have a number—quite a different thing—and
we have to find the path in space for which the number is the minimum.
That is a completely different branch of mathematics. It is not the ordinary
calculus. In fact, it is called the calculus of variations.

There are many problems in this kind of mathematics. For example, the
circle is usually defined as the locus of all points at a constant distance
from a fixed point, but another way of defining a circle is this: a circle
is that curve of given length which encloses the biggest area. Any other
curve encloses less area for a given perimeter than the circle does. So if
we give the problem: find that curve which encloses the greatest area for a
given perimeter, we would have a problem of the calculus of variations—a
different kind of calculus than you’re used to.

So we make the calculation for the path of the object. Here is the way
we are going to do it. The idea is that we imagine that there is a true path
and that any other curve we draw is a false path, so that if we calculate
the action for the false path we will get a value that is bigger that if we
calculate the action for the true path (Figure 4.1.19).

Problem: Find the true path. Where is it? One way, of course, is to
calculate the action for millions and millions of paths and look at which
one is lowest. When you find the lowest one, that’s the true path.

That’s a possible way. But we can do it better than that. When we have
a quantity which has a minimum—for instance, in and ordinary function
like the temperature—one of the properties of the minimum is that if we
go away from the minimum in the first order, the deviation of the function
from its minimum value is only second order. At any place else on the
curve, if we move a small distance the value of the function changes also in
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S2 > S1

S1

S2

fake path

true path

Figure 4.1.19.

the first order. But at a minimum, a tiny motion away makes, in the first
approximation, no difference (Figure 4.1.20).

t

x

minimum

T ( x)2

T x

Figure 4.1.20.

That is what we are going to use to calculate the true path. If we have
the true path, a curve which differs only a little bit from it will, in the first
approximation, make no difference in the action. Any difference will be in
the second approximation, if we really have a minimum.

That is easy to prove. If there is a change in the first order when I
deviate the curve a certain way, there is a change in the action that is
proportional to the deviation. The change presumably makes the action
greater; otherwise we haven’t got a minimum. But then if the change is
proportional to the deviation, reversing the sign of the deviation will make
the action less. We would get the action to increase one way and to decrease
the other way. The only way that it could really be a minimum is that in
the first approximation it doesn’t make any change, that the changes are
proportional to the square of the deviations from the true path.
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So we work it this way: We call x(t) (with an underline) the true path—
the one we are trying to find. We take some trial path x(t) that differs
from the true path by a small amount which we will call η(t) (eta of t).
(See Figure 4.1.21).

t

x

x(t)

η(t)

x(t)

Figure 4.1.21.

Now the idea is that if we calculate the action S for the path x(t), then
the difference between that S and the action that we calculated for the
path x(t)—to simplify the writing we can call it S—the difference of S and
S must be zero in the first-order approximation of small η. It can differ in
the second order, but in the first order the difference must be zero.

And that must be true for any η at all. Well, not quite. The method
doesn’t mean anything unless you consider paths which all begin and end
at the same two points—each path begins at a certain point at t1 and ends
at a certain other point at t2, and those points and times are kept fixed. So
the deviations in our η have to be zero at each end, η(t1) = 0 and η(t2) = 0.
With that condition, we have specified our mathematical problem.

If you didn’t know any calculus, you might do the same kind of thing
to find the minimum of an ordinary function f(x). You could discuss what
happens if you take f(x) and add a small amount h to x and argue that the
correction to f(x) in the first order in h must be zero ant the minimum.
You would substitute x + h for x and expand out to the first order in h
. . . just as we are going to do with η.

The idea is then that we substitute x(t) = x(t) + η(t) in the formula for
the action:

S =

∫ [
m

2

(
dx

dt

)2

− V (x)

]
dt,

where I call the potential energy V (t). The derivative dx/dt is, of course,
the derivative of x(t) plus the derivative of η(t), so for the action I get this
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expression:

S =

∫ t2

t1

[
m

2

(
dx

dt
+
dη

dt

)2

− V (x+ η)

]
dt.

Now I must write this out in more detail. For the squared term I get(
dx

dt

)2

+ 2
dx

dt

dη

dt
+

(
dη

dt

)2

But wait. I’m worrying about higher than the first order, so I will take all
the terms which involve η2 and higher powers and put them in a little box
called ‘second and higher order.’ From this term I get only second order,
but there will be more from something else. So the kinetic energy part is

m

2

(
dx

dt

)2

+m
dx

dt

dη

dt
+ (second and higher order).

Now we need the potential V at x+ η. I consider η small, so I can write
V (x) as a Taylor series. It is approximately V (x); in the next approximation
(from the ordinary nature of derivatives) the correction is η times the rate
of change of V with respect to x, and so on:

V (x+ η) = V (x) + ηV ′(x) +
η2

2
V ′′(x) + . . .

I have written V ′ for the derivative of V with respect to x in order to
save writing. The term in η2 and the ones beyond fall into the ‘second and
higher order’ category and we don’t have to worry about them. Putting it
all together,

S =

∫ t2

t1

[
m

2

(
dx

dt

)2

− V (x) +m
dx

dt

dη

dt

− ηV ′(x) + (second and higher order)

]
dt.

Now if we look carefully at the thing, we see that the first two terms
which I have arranged here correspond to the action S that I would have
calculated with the true path x. The thing I want to concentrate on is the
change in S—the difference between the S and the S that we would get for
the right path. This difference we will write as δS, called the variation in
S. Leaving out the ‘second and higher order’ terms, I have for δS

δS =

∫ t2

t1

[
m
dx

dt

dη

dt
− ηV ′(x)

]
dt.

Now the problem is this: Here is a certain integral. I don’t know what
the x is yet, but I do know that no matter what η is, this integral must
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be zero. Well, you think, the only way that that can happen is that what
multiplies η must be zero. But what about the first term with dη/dt? Well,
after all, if η can be anything at all, its derivative is anything also, so you
conclude that the coefficient of dη/dt must also be zero. That isn’t quite
right. It isn’t quite right because there is a connection between η and its
derivative; they are not absolutely independent, because η(t) must be zero
at both t1 and t2.

The method of solving all problems in the calculus of variations always
uses the same general principle. You make the shift in the thing you want
to vary (as we did by adding η); you look at the first-order terms; then you
always arrange things in such a form that you get an integral of the form
‘some kind of stuff times the shift (η),’ but with no other derivatives (no
dη/dt). It must be rearranged so it is always ‘something’ times η. You will
see the great value of that in a minute. (There are formulas that tell you
how to do this in some cases without actually calculating, but they are not
general enough to be worth bothering about; the best way is to calculate
it out this way.)

How can I rearrange the term in dη/dt to make it have an η? I can
do that by integrating by parts. It turns out that the whole trick of the
calculus of variations consists of writing down the variation of S and then
integrating by parts so that the derivatives of η disappear. It is always the
same in every problem in which derivatives appear.

You remember the general principle for integrating by parts. If you have
any function f times dη/dt integrated with respect to t, you write down
the derivative of ηf :

d

dt
(ηf) = η

df

dt
+ f

dη

dt
.

The integral you want is over the last term, so∫
f
dη

dt
dt = ηf −

∫
η
df

dt
dt.

In our formula for δS, the function f is m times dx/dt; therefore, I have
the following formula for δS.

δS = m
dx

dt
η(t)

∣∣∣∣t2
t1

−
∫ t2

t1

d

dt

(
m
dx

dt

)
η(t)dt−

∫ t2

t1

V ′(x)η(t)dt.

The first term must be evaluated at the two limits t1 and t2. Then I must
have the integral from the rest of the integration by parts. The last term
is brought down without change.

Now comes something which always happens—the integrated part dis-
appears. (In fact, if the integrand part does not disappear, you restate the
principle, adding conditions to make sure it does!) We have already said
that η must be zero at both ends of the path, because the principle is that
the action is a minimum provided that the varied curve begins and ends
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at the chosen points. The condition is that η(t1) = 0 and η(t2) = 0. So
the integrated term is zero. We collect the other terms together and obtain
this:

δS =

∫ t2

t1

[
−md2x

dt2
− V ′(x)

]
η(t)dt.

The variation in S is now the way we we wanted it—there is the stuff in
brackets, say F , all multiplied by η(t) and integrated from t1 to t2.

We have that an integral of something or other times η(t) is always zero:∫
F (t)η(t)dt = 0.

I have some function of t; I multiply it by η(t); and I integrate it from one
end to the other. And no matter what the η is, I get zero. That means
that the function F (t) is zero. That’s obvious, but anyway I’ll show you
one kind of proof.

Suppose that for η(t) I took something which was zero for all t except
right near one particular value (See Figure 4.1.22). It stays zero until it
gets to this t, then it blips up for a moment and blips right back down.

t1 t2 t

η(t)

Figure 4.1.22.

When we do the integral of this η times any function F , the only place that
you get anything other than zero was where η(t) was blipping, and then
you get the value of F at that place times the integral over the blip. The
integral over the blip alone isn’t zero, but when multiplied by F it has to
be; so the function F has to be zero everywhere.

We see that if our integral is zero for any η, then the coefficient of η must
be zero. The action integral will be a minimum for the path that satisfies
this complicated differential equation:[

−md2x

dt2
− V ′(x)

]
= 0.

It’s not really so complicated; you have seen it before. It is just F = ma. The
first term is the mass times acceleration, and the second is the derivative
of the potential energy, which is the force.
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So, for a conservative system at least, we have demonstrated that the
principle of least action gives the right answer; it says that the path that
has the minimum action is the one satisfying Newton’s law.

One remark: I did not prove it was a minimum—maybe it’s a maximum.
In fact, it doesn’t really have to be a minimum. It is quite analogous to
what we found for the ‘principle of least time’ which we discussed in optics.
There also, we said at first it was ‘least’ time. It turned out, however, that
there were situations in which it wasn’t the least time. The fundamental
principle was that for any first-order variation away from the optical path,
the change in time was zero; it is the same story. What we really mean by
‘least’ is that the first-order change in the value of S, when you change the
path, is zero. It is not necessarily a ‘minimum’. 10

Supplement 4.1D
Emmy Noether and Hamilton’s Principle

Emmy Noether (1882–1935) (see Figure 4.1.23) is perhaps best known for
her work in algebra, but she made a significant contribution to Hamilton’s
principle as well.11 For planetary motion, the angular momentum vector
J = r(t)×mṙ(t) is time-independent (so is a conserved quantity), as one can
readily see by computing the time derivative of J and using F = ma (see
Exercise 20). What Noether discovered was a deep connection between such
conserved quantities and symmetries in Hamilton’s principle—in the case
of angular momentum, this is rotational symmetry. Noether’s discoveries
have had a profound influence on the study of mechanical systems, from
classical to quantum, ever since.

10 See the “Feynman Lectures on Physics” for the remainder of the lecture, which

involves extending the above ideas to three dimensions and similar topics.
11“Invariante Variationsprobleme,” Göttingen Math. Phys. 2 (1918): 235–257.
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Figure 4.1.23. Emmy Noether (1882–1935).

Supplement to §4.3
The Orbits of Planets

The purpose of this supplement is to demonstrate that the motion of a
body moving under the influence of Newton’s gravitational law—that is,
the inverse square force law—moves in a conic section. In the text we dealt
with circular orbits only, but some of the results, such as Kepler’s law on
the relation between the period and the size of the orbit can be generalized
to the case of elliptical orbits.

History. At this point it is a good idea to review some of the history
given at the beginning of the text in addition to the relevant sections of
the text (especially §4.1). Recall, for example, that one of the important
observational points that was part of the Ptolemaic theory as well as being
properly explained by the fact that planets move (to an excellent degree of
approximation) in ellipses about the sun, is the appearance of retrograde
motion of the planets, as in Figure 4.3.1.

Methodology. Our approach in this supplement is to use the laws of
conservation of energy and conservation of angular momentum. This means
that we will focus on a combination of techniques using the basic laws of
mechanics together with techniques from differential equations together
with a couple of tricks. Other approaches, and in fact, Newton’s original
approach were much more geometrical.12

12The geometric approach, along with a lot of interesting history, is also emphasized

in the little book Feynman’s Lost Lecture: The Motion of Planets Around the Sun by
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Figure 4.3.1. the apparent motion of the planets. The photograph shows the move-

ments of Mercury, Venus, Mars, Jupiter, and Saturn. the diagram shows the paths traced

by the planets as seen from the Earth, which the Ptolemaic theory tried to explain.

The Kepler Problem. As in the text, we assume that the Sun (of mass
M) is so massive that it remains fixed at the origin and our planet (with
mass m) revolves about the Sun according to Newton’s second law and
moving in the field determined by Newton’s Law of Gravitation. Therefore,
the Kepler problem is the following: Demonstrate that the solution r(t) of
the equation

mr̈ =
GmM

r2
(4.3.3)

is a conic section. The procedure is to suppose that we have a solution,
which we will refer to as an orbit, and to show it is a conic section. By
reversing the argument, one can also show that any conic section, with a
suitable time parametrization, is also a solution.

Energy and Angular Momentum. We saw in the paragraph in §4.3
of the text entitled Conservation of Energy and Escaping the Earth’s Grav-
itational Field that any solution of equation (4.3.3) obeys the law of con-

David L. Goodstein and Judith R. Goodstein, W.W. Norton and Co., New York.
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servation of energy; that is, the quantity

E =
1

2
m‖ṙ‖2 − GmM

r
(4.3.4)

called the energy of the solution, is constant in time.
The second fact that we will need is conservation of angular momen-

tum, which was given in Exercise 20, §4.1. This states that the angular
momentum of a solution is constant in time, namely the cross product

J = mr× ṙ (4.3.5)

is time independent for each orbit.

Orbits Lie in Planes. The first thing we observe is that any solution
must lie in a plane. This is simply because of conservation of angular mo-
mentum: since J is a constant and since J = mr × ṙ, it follows that r lies
in the plane perpendicular to the (constant) vector J.

Introducing Polar Coordinates. From the above consideration, we
can assume that our orbit lies in a plane, which we can take to be the usual
xy-plane. Let us introduce polar coordinates (r, θ) in that plane as usual,
so that the components of the position vector r are given by

r = (r cos θ, r sin θ).

Differentiating in t, we see that the velocity vector has components given
by

ṙ = (ṙ cos θ − rθ̇ sin θ, ṙ sin θ + rθ̇ cos θ)

and so one readily computes that

‖ṙ‖2 = ṙ2 + r2θ̇2. (4.3.6)

Substituting (4.3.6) into conservation of energy gives

E =
1

2
m
(
ṙ2 + r2θ̇2

)
− GmM

r
(4.3.7)

Similarly, the angular momentum is computed by taking the cross product
of r and ṙ:

J = m

∣∣∣∣∣∣
i j k

r cos θ r sin θ 0

ṙ cos θ − rθ̇ sin θ ṙ sin θ + rθ̇ cos θ 0

∣∣∣∣∣∣ (4.3.8)

= mr2θ̇ k (4.3.9)

Thus,
J = mr2θ̇ (4.3.10)

is constant in time.
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Kepler’s Second Law. We notice that the expression for J is closely
related to the area element in polar coordinates, namely dA = 1

2r
2dθ. In

fact, measuring area from a given reference θ0, we get

dA

dt
=

J

2m
(4.3.11)

which is a constant. Thus, we get Kepler’s second law, namely that for an
orbit, equal areas are swept out in equal times. Also note that this works for
any central force motion law as it depends only on conservation of angular
momentum.

Rewriting the Energy Equation. Next notice that the energy equa-
tion (4.3.7) can be written, with θ̇ eliminated using (4.3.10), as

E =
1

2
mṙ2 +

J2

2mr2
− GmM

r
(4.3.12)

It will be convenient to seek a description of the orbit in polar form as
r = r(θ).

A Trick. Solving differential equations to get explicit formulas often in-
volves a combination of clever guesses, insight and luck; the situation with
the Kepler problem is one of these situations. A trick that works is to intro-
duce the new dependent variable u = 1/r (of course one has to watch out
for the possibility that the orbit passes through the origin, in which case
r would be zero.) But watch the nice things that happen with this choice.
First of all, by the chain rule,

du

dθ
= − 1

r2

dr

dθ

and second, notice that, using the chain rule, the preceding equation and
(4.3.10),

ṙ =
dr

dθ
θ̇ = −r2θ̇

du

dθ

= − J
m

du

dθ

and so from (4.3.12) we find that

E =
J2

2m

(
du

dθ

)2

+
J2u2

2m
−GmMu, (4.3.13)

that is,

2Em

J2
=

(
du

dθ

)2

+ u2 − 2GMm2

J2
u, (4.3.14)

Notice the interesting way that only u and its derivative with respect to
θ appears and that the denominators containing r have been eliminated.
This is the main purpose of doing the change of dependent variable from r
to u.
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Completing the Square. Next, we are going to eliminate the term
linear in u in (4.3.14) by completing the square. Let α = GMm2/J2, so
that (4.3.14) becomes

2Em

J2
=

(
du

dθ

)2

+ u2 − 2αu, (4.3.15)

Now let
v = u− α

so that equation (4.3.15) becomes(
dv

dθ

)2

+ v2 = β2, (4.3.16)

where

β2 =
2Em

J2
− α2.

We make one more change of variables to

w =
1

α
v =

1

α
u− 1

so that (4.3.16) becomes (
dw

dθ

)2

+ w2 = e2, (4.3.17)

where

e2 =
β2

α2
=

2Em

α2J2
− 1.

Solving the Equation. The solution of the equation (4.3.17) is readily
verified to be

w = e cos(θ − θ0)

where θ0 is a constant of integration. In terms of the original variable r,
this means that

r (e cos(θ − θ0) + 1) =
1

α
. (4.3.18)

Orbits are Conics. Equation (4.3.18) in fact is the equation of a conic
written in polar coordinates, where e is the eccentricity of the orbit, which
determines its shape. The quantity l = 1/α determines its scale and θ0

its orientation relative to the xy-axes; it is also the angle of the closest
approach to the origin.

In the case that 0 ≤ e < 1 (and E < 0) one has an ellipse of the form

(x+ ae)2

a2
+
y2

b2
= 1
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where

a =
l

1− e2
= −GmM

2E

and

b2 = al = − J2

2mE
.

The case e = 0 gives circular orbits. One also gets hyperbolic orbits if e > 1
and parabolic orbits in the special case when e = 1. Thus, as e ranges from
0 to 1, the ellipse gets a more and more elongated shape.

Kepler’s 3rd Law. From Kepler’s second law and the fact that the area
of an ellipse is πab, one finds that the period T of an elliptical orbit is
related to the semi-major axis a by(

T

2π

)2

=
a3

GM

which is Kepler’s third law. Note that this reduces to what we saw in the
text for circular orbits in the case of a circle (when a is the radius of the
circle).
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Supplement to §4.4
Flows and the Geometry of the Divergence

Flows of Vector Fields. It is convenient to give the unique solution
through a given point at time 0 a special notation:

φ(x, t) =

{
the position of the point on the flow line
through the point x after time t has elapsed.

}
.

With x as the initial condition, follow along the flow line for a time period
t until the new position φ(x, t) is reached (see Figure 1). Alternatively,

x

[time t = 0]

the flow line

passing through x

φ(x, t)

[time t]

Figure 4.4.1. The definition of the flow φ(x, t) of F.

φ(x, t) is defined by:

∂

∂t
φ(x, t) = F(φ(x, t))

φ(x, 0) = x

}
. (1)

We call the mapping φ, which is regarded as the function of the variables
x and t, the flow of F.

Let Dx denote differentiation with respect to x, holding t fixed. It is
proved in courses on differential equations that φ is, in fact, a differentiable
function of x. By differentiating equation (1) with respect to x, we get

Dx
∂

∂t
φ(x, t) = Dx[F(φ(x, t))].

The equality of mixed partial derivatives may be used on the left-hand side
of this equation and the chain rule applied to the right-hand side, yielding

∂

∂t
Dxφ(x, t) = DF(φ(x, t))Dxφ(x, t), (2)



62 4 Vector Valued Functions

where DF(φ(x, t)) denotes the derivative of F evaluated φ(x, t). Equation
(2), a linear differential equation for Dxφ(x, t) is called the equation of
the first variation. It will be useful in our discussion of divergence and
curl in the next section. Both DxF(φ) and Dxφ are 3× 3 matrices since F
and φ take values in R3 and are differentiated with respect to x ∈ R3; for
vector fields in the plane, they would be 2× 2 matrices.

The Geometry of the Divergence. We now study the geometric mean-
ing of the divergence in more detail. This discussion depends on the concept
of the flow φ(x, t) of a vector field F given in the preceding paragraph. See
Exercises 3, 4, and 5 below for the corresponding discussion of the curl.

Fix a point x and consider the three standard basis vectors i, j,k em-
anating from x. Let ε > 0 be small and consider the basis vectors v1 =
εi,v2 = εj,v3 = εk, also emanating from x. These vectors span a paral-
lelepiped P (0). As time increases or decreases, the flow φ(x, t) carries P (0)
into some object. For fixed time, φ is a differentiable function of x (that
is, φ is a differentiable map of R3 to R3). When ε is small, the image of
P (0) under φ can be approximated by its image under the derivative of
φ with respect to x. Recall that if v is a vector based at a point P1 and
ending at P2, so v = P2−P1, then φ(P2, t)−φ(P1, t) ≈ Dxφ(x, t) ·v. Thus
for fixed time and small positive ε, P (0) is approximately carried into a
parallelepiped spanned by the vectors v1(t),v2(t),v3(t) given by

v1(t) = Dxφ(x, t) · v1

v2(t) = Dxφ(x, t) · v2

v3(t) = Dxφ(x, t) · v3

 . (3)

Since φ(x, 0) = x for all x, it follows that v1(0) = v1,v2(0) = v2, and
v3(0) = v3. In summary, the vectors v1(t),v2(t),v3(t) span a parallelepiped
P (t) that moves in time (see Figure 4.4.2).

flow line

x

v1

v2

v3

v1(t)

v2(t)

v3(t)
P(0)

P(t)

Figure 4.4.2. The moving basis v1(t),v2(t),v3(t) and the associated parallepiped.
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Let the volume of P (t) be denoted by V(t). The main geometric meaning
of divergence is given by the following theorem.

Theorem.

div F(x) =
1

V(0)

d

dt
V(t)

∣∣∣∣
t=0

.

Proof. By equation (2) of the previous paragraph,

d

dt
vi(t) = DF(φ(x, t)) · (Dxφ(x, t) · vi) (4)

for i = 1, 2, 3. Since φ(x, 0) = x, it follows that Dxφ(x, 0) is the identity
matrix, so that evaluation at t = 0 gives

d

dt
vi(t)

∣∣∣∣
t=0

= DF(x) · vi.

The volume V(t) is given by the triple product:

V(t) = v1(t) · [v2(t)× v3(t)].

Using the differentiation rules of §4.1 and the identities

v1 · [v2 × v3] = v2 · [v3 × v1] = v3 · [v1 × v2],

equation (4) gives

dV
dt

=
dv1

dt
· [v2(t)× v3(t)] + v1(t) ·

[
dv2

dt
× v3(t)

]
+ v1(t) ·

[
v2(t)× dv3

dt

]
=
dv1

dt
·
[
v2(t)× v3(t)] +

dv2

dt
· [v3(t)× v1(t)] +

dv3

dt
· [v1(t)× v2(t)

]
.

At t = 0, substitution from formula (3) and the facts that

v1 × v2 = εv3, v3 × v1 = εv2 and v2 × v3 = εv1,

gives

dV
dt

∣∣∣∣
t=0

= ε3[DF(x)i] · i + ε3[DF(x)j] · j + ε3[DF(x)k] · k. (5)

Since F = F1i + F2j + F3k, we get [DF(x)i] · i = ∂F1/∂x. Similarly, the
second and third terms of equation (5) are ε3(∂F2/∂y) and ε3(∂F3/∂z).
Substituting these facts into equation (5) and dividing by V(0) = ε3 proves
the theorem. �
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The reader who is familiar with a little more linear algebra can prove
this generalization of the preceding Theorem:13 Let v1,v2 and v3 be any
three noncoplanar (not necessarily orthonormal) vectors emanating from x
that flow according to the formula

vi(t) = Dxφ(x, t) · vi, i = 1, 2, 3.

The vectors v1(t),v2(t),v3(t) span a parallelepiped P (t) with volume
V(t). Then

1

V(0)

dV
dt

∣∣∣∣
t=0

= div F(x). (6)

In other words, the divergence of F at x is the rate at which the volumes
change, per unit volume. “Rate” refers to the rate of change with respect
to time as the volumes are transported by the flow.

Exercises.

1. If f(x, t) is a real-valued function of x and t, define the material
derivative of f relative to a vector field F as

Df

Dt
=
∂f

∂t
+∇f(x) · F.

Show that Df/Dt is the t derivative of f(φ(x, t), t) (i.e., the t deriva-
tive of f transported by the flow of F).

2. (a) Assuming uniqueness of the flow lines through a given point at a
given time, prove the following property of the flow φ(x, t) of a vector
field F:

φ(x, t+ s) = φ(φ(x, s), t).

(b) What is the corresponding property for Dxφ?

3. Let v and w be two vectors emanating from the origin and let them
be moved by the derivative of the flow:

v(t) = Dxφ(0, t)v, w(t) = Dxφ(0, t)w,

so that at time t = 0 and at the origin 0 in R3,

dv

dt

∣∣∣∣
t=0

= DxF(0) · v and
dw

dt

∣∣∣∣
t=0

= DxF(0) ·w.

13The reader will need to know how to write the matrix of a linear transformation

with respect to a given basis and be familiar with the fact that the trace of a matrix is

independent of the basis.
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Show that

d

dt
v ·w

∣∣∣∣
t=0

= [DxF(0) · v] ·w + v · [DxF(0) ·w]

= [(DxF(0) + [DxF(0)]T )v] ·w].

4. Any matrix A can be written (uniquely) as the sum of a symmetric
matrix (a matrix S is symmetric if ST = S) and an antisymmetric
matrix (WT = −W ) as follows:

A =
1

2
(A+AT ) +

1

2
(A−AT ) = S +W.

In particular, for A = DxF(0),

S =
1

2
[DxF(0) + [DxF(0)]T ]

and

W =
1

2
[DxF(0) + [DxF(0)]T ].

We call S the deformation matrix and W the rotation matrix.
Show that the entries of W are determined by

w12 = −1

2
(curl F)3, w23 = −1

2
(curl F)1, and w31 = −1

2
(curl F)2.

5. Let w = 1
2 (∇ × F)(0). Assume that axes are chosen so that w is

parallel to the z axis and points in the direction of k. Let v = w× r,
where r = xi+yj+zk, so that v is the velocity field of a rotation about
the axis w with angular velocity ω = ‖w‖ and with curl v = 2w.
Since r is a function of (x, y, z),v is also a function of (x, y, z). Show
that the derivative of v at the origin is given by

Dv(0) = W =

 0 −ω 0
ω 0 0
0 0 0

 .
Interpret the result.

6. Let

V(x, y, z) = −yi + xj, W(x, y, z) =
V(x, y, z)

(x2 + y2)1/2
,

and

Y(x, y, z) =
V(x, y, z)

(x2 + y2)
.

(a) Compute the divergence and curl of V,W, and Y.
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(b) Find the flow lines of V,W, and Y.

(a) How will a small paddle wheel behave in the flow of each of
V,W, and Y.

7. Let φ(x, t) be the flow of a vector field F. Let x and t be fixed.
For small vectors v1 = εi,v2 = εj and v3 = εk emanating from
x, let P (0) be the parallelepiped spanned by v1,v2,v3. Argue that
for small positive ε, P (0) is carried by the flow to an approximate
parallelepiped spanned by v1(t),v2(t),v3(t) given by formula (3).
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5
Double and Triple Integrals

Both the derivative and integral can be based on the notion
of a transition point. For example, a function is Riemann inte-
grable when there is a transition point between the lower and
upper sums.

Alan Weinstein, 1982

Supplement to §5.2
Alternative Definition of the Integral

There is another approach to the definition of the integral based on step
functions that you may want to mention or have some of your better stu-
dents exposed to; we present this (optional) definition first.

We say that a function g(x, y) defined in R = [a, b] × [c, d] is a step
function provided there are partitions

a = x0 < x1 < x2 < . . . < xn = b

of the closed interval [a, b] and

c = y0 < y1 < y2 < . . . < ym = d

of the closed interval [c, d] such that, in each of the mn open rectangles

Rij = (xi−1, xi)× (yj−1, yj),
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the function g(x, y) has a constant value kij . The graph of a generic step
function is shown in Figure 5.2.1.

x0 = a

x1

b = x2

y3 = dy1 y2

y

c = y0

x

z

Graph of g

Figure 5.2.1. The function g is a step function since it is constant on each subrectangle.

We will define the integral∫∫
R

g(x, y)dx dy

of a step function over a rectangle in such a way that, if g(x, y) ≥ 0 or R,
the integral equals the volume of the region V under the graph. Since the
part of V lying over Rij has height kij and base area (xi−xi−1)(yi−yi−1),
the volume of this part is kij(xi − xi−1)(yi − yi−1), or kij∆xi∆yj where
∆xi = xi − xi−1 and ∆yi = yi − yi−1 as in one-variable calculus. The
volume of V is the sum of all the kij∆xi∆yj as i ranges from 1 to n and j
ranges from 1 to m (making nm terms in all). We denote this sum by

n,m∑
i=1,j=1

.

Using this geometric guide, we define∫∫
R

g(x, y)dx dy =

n,m∑
i=1,j=1

kij∆xi∆yj

for every step function g, whether or not its values kij are all nonnegative.

Example 1. Let g take values on the rectangles as shown in Figure 5.2.2.
Calculate the integral of g over the rectangle R = [0, 5]× [0, 3].
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Figure 5.2.2. Find
∫∫

D g(x, y)dx dy if g take the values shown.

Solution. The integral of g is the sum of the values of g times the areas
of the rectangles:∫∫

R

g(x, y)dx dy =− 8× 2 + 2× 3 + 6× 2

+ 3× 3 + 4× 2− 1× 3 = 16. �

Of course, the functions which we want to integrate are usually not step
functions. To define their integrals, we use a comparison method whose
origins go back as far as Archimedes.

If f1(x, y) and f2(x, y) are any two functions defined on the rectangle
R, then any reasonable definition of the double integral of f2 should be
larger than that of f1 if f1(x, y) ≤ f2(x, y) everywhere on R. Thus, if f is
any function which we wish to integrate over R, and if g and h are step
functions on R such that g(x, y) ≤ f(x, y) ≤ h(x, y) for all (x, y) in R, then
the number

∫∫
R
f(x, y)dx dy which we are trying to define must lie between

the numbers
∫∫
R
g(x, y)dx dy and

∫∫
R
h(x, y)dx dy which have already been

defined. This condition on the integral actually becomes a definition if we
rephrase it as follows.

Alternative Definition of the Double Integral. A function f defined
on a rectangle R is said to be integrable on R if for any positive number ε,
there exist step functions g(x, y) and h(x, y) with g(x, y) ≤ f(x, y) ≤ h(x, y)
for all (x, y) in R and such that the difference∫∫

R

h(x, y)dx dy −
∫∫

R

g(x, y)dx dy

is less than ε. We shall call such step functions g and h “surrounding func-
tions”. When this condition holds, it can be shown that there is just one
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number I with the property that∫∫
R

g(x, y)dx dy ≤ I ≤
∫∫

R

h(x, y)dx dy

for surrounding functions g and h as above. The number I is called the
integral of f on R and is denoted by

∫∫
R
f(x, y)dx dy.

Example 2. Let R be the rectangle 0 ≤ x ≤ 2, 1 ≤ y ≤ 3, and let
f(x, y) = x2y. Choose a step function h(x, y) ≥ f(x, y) to show that∫∫
R
f(x, y)dx dy ≤ 25.

Solution. The constant function h(x, y) = 12 ≥ f(x, y) has integral 12×
4 = 48, so we get only the crude estimate

∫∫
R
f(x, y)dx dy ≤ 48. To get a

better one, divide R into four pieces:

R1 = [0, 1]× [1, 2], R3 = [1, 2]× [1, 2],

R2 = [0, 1]× [2, 3], R4 = [1, 2]× [2, 3].

Let h be the function given by taking the maximum value of f on each
subrectangle (evaluated at the upper right-hand corner); that is,

h(x, y) = 2 on R1, 3 on R2, 8 on R3, and 12 on R4.

Therefore, the integral of h is∫∫
R

h(x, y)dx dy = 2× 1 + 3× 1 + 8× 1 + 12× 1 = 25.

Since h ≥ f, we get ∫∫
R

f(x, y)dx dy ≤ 25. �

Alternative Proof of Reduction to Iterated Integrals. The upper
and lower sums approach can also be used to give proof of the reduction
to iterated integrals. We give this (optional) proof here. We first treat step
functions. Let g be a step function, with g(x, y) = kij on the rectangle
(ti−1, ti)× (sj−1, sj), so that∫∫

D

g(x, y)dx dy =

n,m∑
i=1,j=1

kij∆ti∆sj .

If the summands kij∆ti∆sj are laid out in a rectangular array, they may
be added by first adding along rows and then adding up the subtotals, just
as in the text (see Figure 5.2.3):
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k11∆t1∆s1k21∆t2∆s1 . . . kn1∆tn∆s2 −→

(
n∑
i=1

ki1∆ti

)
∆s1

k12∆t1∆s2k22∆t2∆s2 . . . kn2∆tn∆s2 −→

(
n∑
i=1

ki2∆ti

)
∆s2

...
...

...

k1m∆t1∆smk2m∆t2∆sm . . . knm∆tn∆sm −→

(
n∑
i=1

kim∆ti

)
∆sm

m∑
j=1

(
n∑
i=1

kij∆ti

)
∆sj

Figure 5.2.3. Reduction to iterated integrals.

The coefficient of ∆sj in the sum over the jth row,

n∑
j=1

kij∆ti, is equal

to
∫ b
a
g(x, y)dx for any y with sj−1 < y < sj , since, for y fixed, g(x, y) is a

step function of x. Thus, the integral
∫ b
a
g(x, y)dx is a step function of y,

and its integral with respect to y is the sum:

∫ d

c

[∫ b

a

g(x, y)dx

]
dy =

m∑
j=1

(
n∑
i=1

kij∆ti

)
∆sj =

∫ ∫
D

g(x, y)dx dy.

Similarly, by summing first over columns and then over rows, we obtain∫∫
D

g(x, y)dx dy =

∫ b

a

[∫ d

c

g(x, y)dy

]
dx.

The theorem is therefore true for step functions.
Now let f be integrable on D = [a, b]× [c, d] and assume that the iterated

integral
∫ b
a

[∫ d
c
f(x, y)dy

]
dx exists. Denoting this integral by S0, we will

show that every lower sum for f on D is less than or equal to S0, while
every upper sum is greater than or equal to S0, so S0 must be the integral
of f over D.

To carry out our program, let g be any step function such that

g(x, y) ≤ f(x, y) (1)
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for all (x, y) in D. Integrating (1) with respect to y and using “monotonic-
ity” of the one-variable integral, we obtain∫ d

c

g(x, y)dy ≤
∫ d

c

f(x, y)dy (2)

for all x in [a, b]. Integrating (2) with respect to x and applying monotonic-
ity once more gives∫ b

a

[∫ d

c

g(x, y)dy

]
dx ≤

∫ b

a

[∫ d

c

f(x, y)dy

]
dx. (3)

Since g is a step function, it follows from the first part of this proof that
the left-hand side of (3) is equal to the lower sum

∫∫
D
g(x, y)dx dy; the

right-hand side of (3) is just S0, so we have shown that every lower sum is
less than or equal to S0. The proof that every upper sum is greater than
or equal to S0 is similar, and so we are done. �
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§5.6 Technical Integration Theorems

This section provides the main ideas of the proofs of the existence and
additivity of the integral that were stated in §5.2 of the text. These proofs
require more advanced concepts than those needed for the rest of this chap-
ter.

Uniform Continuity. The notions of uniform continuity and the com-
pleteness of the real numbers, both of which are usually treated more fully
in a junior-level course in mathematical analysis or real-variable theory, are
called upon here.

Definition. Let D ⊂ Rn and f : D → R. Recall that f is said to be
continuous at x0 ∈ D provided that for all ε > 0 there is a number δ > 0
such that if x ∈ D and ‖x− x0‖ < δ, then ‖f(x)− f(x0)‖ < ε. We say f
is continuous on D if it is continuous at each point of D.

The function f is said to be uniformly continuous on D if for every
number ε > 0 there is a δ > 0 such that whenever x,y ∈ D and ‖x−y‖ < δ,
then ‖f(x)− f(y)‖ < ε.

The main difference between continuity and uniform continuity is that
for continuity, δ can depend on x0 as well as ε, whereas in uniform conti-
nuity δ depends only on ε. Thus any uniformly continuous function is also
continuous. An example of a function that is continuous but not uniformly
continuous is given in Exercise 2 in this supplement. The distinction be-
tween the notions of continuity and uniform continuity can be rephrased:
For a function f that is continuous but not uniformly continuous, δ cannot
be chosen independently of the point of the domain (the x0 in the defini-
tion). The definition of uniform continuity states explicitly that once you
are given an ε > 0, a δ can be found independent of any point of D.

Recall from §3.3 that a set D ⊂ Rn is bounded if there exists a number
M > 0 such that ‖x‖ ≤M for all x ∈ D. A set is closed if it contains all
its boundary points. Thus a set is bounded if it can be strictly contained
in some (large) ball. The next theorem states that under some conditions
a continuous function is actually uniformly continuous.

Theorem. The Uniform Continuity Principle. Every function that
is continuous on a closed and bounded set D in Rn is uniformly continuous
on D.

The proof of this theorem will take us too far afield;1 however, we can
prove a special case of it, which is, in fact, sufficient for many situations
relevant to this text.

1The proof can be found in texts on mathematical analysis. See, for example, J.
Marsden and M. Hoffman, Elementary Classical Analysis, 2nd ed., Freeman, New York,
1993, or W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New

York, 1976.
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Proof of a special case. Let us assume that D = [a, b] is a closed interval
on the line, that f : D → R is continuous, that df/dx exists on the open
interval (a, b), and that df/dx is bounded (that is, there is a constant C > 0
such that |df(x)/dx| ≤ C for all x in (a, b)). To show that these conditions
imply f is uniformly continuous, we use the mean value theorem as follows:
Let ε > 0 be given and let x and y lie on D. Then by the mean value
theorem,

f(x)− f(y) = f ′(c)(x− y)

for some c between x and y. By the assumed boundedness of the derivative,

|f(x)− f(y)| ≤ C|x− y|.

Let δ = ε/C. If |x− y| < δ, then

|f(x)− f(y)| < C
ε

C
= ε.

Thus f is uniformly continuous. (Note that δ depends on neither x nor y,
which is a crucial part of the definition.)

This proof also works for regions in Rn that are convex; that is, for any
two points x,y in D, the line segment c(t) = tx + (1 − t)y, 0 ≤ t ≤ 1,
joining them also lies in D. We assume f is differentiable (on an open set
containing D) and that ‖∇f(x)‖ ≤ C for a constant C. Then the mean
value theorem applied to the function h(t) = f(c(t)) gives a point t0 such
that

h(1)− h(0) = [h′(t0)][1− 0]

or

f(x)− f(y)− h′(t0) = ∇f(c(t0)) · c′(t0) = ∇f(c(t0)) · (x− y)

by the chain rule. Thus by the Cauchy-Schwartz inequality,

|f(x)− f(y)| ≤ ‖∇f(c(t0))‖‖x− y‖ ≤ C‖x− y‖.

Then, as above, given ε > 0, we can let δ = ε/C. �

Completeness. We now move on to the notion of a Cauchy sequence of
real numbers. In the definition of Riemann sums we obtained a sequence of
numbers {Sn}, n = 1, . . .. It would be nice if we could say that this sequence
of numbers converges to S (or has a limit S), but how can we obtain such a
limit? In the abstract setting, we know no more about Sn than that it is the
Riemann sum of a (say, continuous) function, and, although this has not
yet been proved, it should be enough information to ensure its convergence.

Thus we must determine a property for sequences that guarantees their
convergence. We shall define a class of sequences called Cauchy sequences,
and then take as an axiom of the real number system that all such sequences
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converge to a limit2. The determination in the nineteenth century that
such an axiom was necessary for the foundations of calculus was a major
breakthrough in the history of mathematics and paved the way for the
modern rigorous approach to mathematical analysis. We shall say more
this shortly.

Definition. A sequence of real numbers {Sn}, n = 1, . . ., is said to satisfy
the Cauchy criterion if for every ε > 0 there exists an N such that for
all m,n ≥ N , we have |Sn − Sm| < ε.

If a sequence Sn converges to a limit S, then Sn is a Cauchy sequence.
To see this, we use the definition: For every ε > 0 there is an N such
that for all n ≥ N, |Sn − S| < ε. Given ε > 0, choose N1 such that for
n ≥ N1, |Sn − S| < ε/2 (use the definition with ε/2 in place of ε). Then if
n,m ≥ N1,

|Sn − Sm| = |Sn − S + S − Sm| ≤ |Sn − S|+ |S − Sm| <
ε

2
+
ε

2
= ε,

which proves our contention. The completeness axiom asserts that the con-
verse is true as well:

Completeness Axiom of the Real Number. Every Cauchy sequence
{Sn} converges to some limit S.

Historical Note. Augustin Louis Cauchy (1789–1857), one of the great-
est mathematicians of all time, defined what we now call Cauchy sequences
in his Cours d’analyse, published in 1821. This book was a basic work on the
foundations of analysis, although it would be considered somewhat loosely
written by the standards of our time. Cauchy knew that a convergent se-
quence was “Cauchy” and remarked that a Cauchy sequence converges. He
did not have a proof, nor could he have had one, since such a proof depends
on the rigorous development of the real number system that was achieved
only in 1872 by the German mathematician Georg Cantor (1845-1918).

It is now clear what we must do to ensure that the Riemann sums {Sn}
of, say, a continuous function on a rectangle converge to some limit S, which
would prove that continuous functions on rectangles are integrable; we must
show that {Sn} is a Cauchy sequence. In demonstrating this, we use the
uniform continuity principle. The integrability of continuous functions will
be a consequence of the following two lemmas.

Lemma 1. Let f be a continuous function on a rectangle R in the plane,
and let {Sn} be a sequence of Riemann sums for f . Then {Sn} converges
to some number S.

2Texts on mathematical analysis, such as those mentioned in the preceding footnote,

sometimes use different axioms, such as the least upper bound property. In such a setting,

our completeness axiom becomes a theorem.



76 5 Double and Triple Integrals

Proof. Given a rectangle R ⊂ R2, R = [a, b]× [c, d], we have the regular
partition of R, a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < yn = d,
discussed in §5.2 of the text. Recall that

∆x = xj+1 − xj =
b− a
n

, ∆y = yk+1 − yk =
d− c
n

,

and

Sn =

n−1∑
j,k=0

f(cjk)∆x∆y,

where cjk is an arbitrarily chosen point in Rjk = [xj , xj+1] × [yk, yk+1].
The sequence {Sn} is determined only by the selection of the points cjk.

For the purpose of the proof we shall introduce a slightly more compli-
cated but very precise notation: we set

∆xn =
b− a
n

and ∆yn =
d− c
n

.

With this notation we have

Sn =

n−1∑
j,k

f(cjk)∆xn∆yn. (1)

To show that {Sn} satisfies the Cauchy criterion, we must show that
given ε > 0 there exists an N such that for all n,m ≥ N, |Sn − Sm| ≤ ε.
By the uniform continuity principle, f is uniformly continuous on R. Thus
given ε > 0 there exists a δ > 0 such that when x,y ∈ R, ‖x−y‖ < δ, then
|f(x) − f(y)| < ε/[2 area(R)] (the quantity ε/[2 area(R)] is used in place
of ε in the definition). Let N be so large that for any m ≥ N the diameter
(length of a diagonal) of any subrectangle Rjk in the mth regular partition
of R is less than δ. Thus if x,y are points in the same subrectangle, we will
have the inequality |f(x− f(y))| < ε/[2 area(R)].

Fix m,n ≥ N . We will show that |Sn − Sm| < ε. This shows that {Sn}
is a Cauchy sequence and hence converges. Consider the mnth = (m times
n)th regular partition of R. Then

Smn =
∑
r,t

f(c̃rt)∆x
mn∆ymn,

where c̃rt is a point in the rtth subrectangle. Note that each subrectangle
of the mnth partition is a subrectangle of both the mth and the nth regular
partitions (see Figure 5.6.1).

Let us denote the subrectangles in the mnth subdivision by R̃rt and
those in the nth subdivision by Rjk. Thus each R̃rt ⊂ Rjk for some jk, and
hence we can rewrite formula (1) as

Sn =

n−1∑
j,k

 ∑
R̃rt⊂Rjk

f(cjk)∆xmn∆ymn

 . (1′)
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Figure 5.6.1. The shaded box shows a subrectangle in the mnth partition, and the

darkly outlined box, a subrectangle in the mth partition.

Here we are using the fact that∑
R̃rt⊂Rjk

f(cjk)∆xmn∆ymn = f(cjk)∆xn∆yn,

where the sum is taken over all subrectangles in the mnth subdivision
contained in a fixed rectangle Rjk in the nth subdivision. We also have the
identity

Smn =

mn−1∑
r,t

f(c̃rt)∆x
mn∆ymn. (2)

This relation can also be rewritten as

Smn =
∑
j,k

∑
R̃rt⊂Rjk

f(c̃rt)∆x
mn∆ymn. (2′)

where in equation (2′) we are first summing over those subrectangles in
the mnth partition contained in a fixed Rjk and then summing over j, k.
Subtracting equation (2′) from equation (1′), we get

|Sn − Smn| =

∣∣∣∣∣∣
∑
j,k

∑
R̃rt⊂Rjk

[f(cjk)∆xmn∆ymn − f(c̃rt)∆x
mn∆ymn]

∣∣∣∣∣∣
≤
∑
j,k

∑
R̃rt⊂Rjk

|f(cjk)− f(c̃rt)|∆xmn∆ymn.
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By our choice of δ and N , |f(cjk) − f(c̃rt)| < ε/[2 area(R)], and conse-
quently the above inequality becomes

|Sn − Smn| ≤
∑
j,k

∑
R̃rt⊂Rjk

ε

2 area (R)
∆xmn∆ymn =

ε

2
.

Thus, |Sn − Smn| < ε/2 and similarly one shows that |Sn − Smn| < ε/2.
Since

|Sn − Sm| = |Sn − Smn + Smn − Sm| ≤ |Sn − Smn|+ |Smn − Sm| < ε

for m,n ≥ N , we have shown {Sn} satisfies the Cauchy criterion and thus
has a limit S. �

We have already remarked that each Riemann sum depends on the se-
lection of a collection of points cjk. In order to show that a continuous
function on a rectangle R is integrable, we must further demonstrate that
the limit S we obtained in Lemma 1 is independent of the choices of the
points cjk.

Lemma 2. The limit S in Lemma 1 does not depend on the choice of points
cjk.

Proof. Suppose we have two sequences of Riemann sums {Sn} and {S∗n}
obtained by selecting two different sets of points, say cjk and c∗jk in each
nth partition. By Lemma 1 we know that {Sn} converges to some number
S and {S∗n} must also converge to some number, say S∗. We want to show
that S = S∗ and shall do this by showing that given any ε > 0, |S−S∗| < ε,
which implies that S must be equal to S∗ (why?).

To start, we know that f is uniformly continuous on R. Consequently,
given ε > 0, there exits a δ such that |f(x)− f(y)| < ε/[3 area(R)] when-
ever ‖x − y‖ < δ. We choose N so large that whenever n ≥ N the di-
ameter of each subrectangle in the nth regular partition is less than δ.
Since limn→∞ Sn = S and limn→∞ S∗n = S∗, we can assume that N
has been chosen so large that n ≥ N implies that |Sn − S| < ε/3 and
|S∗n − S∗| < ε/3. Also, for n ≥ N we know by uniform continuity that if
cjk and c∗jk are points in the same subrectangle Rjk of the nth partition,
then |f(cjk)− f(c∗jk)| < ε/[3 area(R)]. Thus

|Sn − S∗n| =

∣∣∣∣∣∣
∑
j,k

f(cjk)∆xn∆yn −
∑
j,k

f(c∗jk)∆xn∆yn

∣∣∣∣∣∣
≤
∑
j,k

|f(cjk)− f(c∗jk)|∆xn∆yn <
ε

3
.

We now write

|S−S∗| = |S−Sn+Sn−S∗n+S∗n−S∗| ≤ |S−Sn|+ |Sn−S∗n|+ |S∗n−S| < ε



5.6 Technical Integration Theorems 79

and so the lemma is proved. �

Putting lemmas 1 and 2 together proves Theorem 1 of §5.2 of the main
text:

Theorem 1 of §5.2 of the Text. Any continuous function defined on a
rectangle R is integrable.

Historical Note. Cauchy presented the first published proof of this the-
orem in his résumé of 1823, in which he points out the need to prove the
existence of the integral as a limit of a sum. In this paper he first treats
continuous functions (as we are doing now), but on an interval [a, b]. (The
proof is essentially the same.) However, his proof was not rigorous, since
it lacked the notion of uniform continuity, which was not available at that
time.

The notion of a Riemann sum Sn for a function f certainly predates
Bernhard Riemann (1826–1866). The sums are probably named after him
because he developed a theoretical approach to the study of integration
in a fundamental paper on trigonometric series in 1854. His approach, al-
though later generalized by Darboux (1875) and Stieltjes (1894), was to last
more than half a century until it was augmented by the theory Lebesque
presented to the mathematical world in 1902. This latter approach to inte-
gration theory is generally studied in graduate courses in mathematics.

The proof of Theorem 2 of §5.2 is left to the reader in Exercises 4 to 6
at the end of this section. The main ideas are essentially contained in the
proof of Theorem 1.

Additivity Theorem. Our next goal will be to present a proof of prop-
erty (iv) of the integral from §5.2, namely, its additivity. However, because
of some technical difficulties in establishing this result in its full generality,
we shall prove it only in the case in which f is continuous.

Theorem. Additivity of the Integral. Let R1 and R2 be two disjoint
rectangles (rectangles whose intersection contains no rectangle) such that
Q = R1 ∪R2 is again a rectangle as in Figure 5.6.2. If f is a function that
is continuous over Q and hence over each Ri, then∫∫

Q

f =

∫∫
R1

f +

∫∫
R2

f. (3)

Proof. The proof depends on the ideas that have already been presented
in the proof of Theorem 1.

The fact that f is integrable over Q,R1, and R2 follows from Theorem
1. Thus all three integrals in equation (3) exist, and it is necessary only to
establish equality.
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x

y

a b

c

d
R1 R2

Q

b1

Rjk
1

Rjk
2

Figure 5.6.2. Elements of a regular partition of R1 and R2.

Without loss of generality we can assume that

R1 = [a, b1]× [c, d] and R2 = [b1, b]× [c, d]

(see Figure 5.6.2). Again we must develop some notation. Let

∆xn1 =
b1 − a
n

, ∆xn2 =
b− b1
n

, ∆xn =
b− a
n

, and ∆yn =
d− c
n

.

Let
S1
n =

∑
j,k

f(c1
jk)∆xn1 ∆yn (4)

S2
n =

∑
j,k

f(c2
jk)∆xn2 ∆yn (5)

Sn =
∑
j,k

f(cjk)∆xn∆yn (6)

where c1
jk, c

2
jk, and cjk are points in the jkth subrectangle of the nth

regular partition of R1, R2, andQ, respectively. Let Si = limn→∞ Sin, where
i = 1, 2, and S = limn→∞ Sn. It must be shown that S = S1 + S2, which
we will accomplish by showing that for arbitrary ε > 0, |S − S1 − S2| < ε.

By the uniform continuity of f on Q we know that given ε > 0 there
is a δ > 0 such that whenever ‖x − y‖ < δ, |f(x) − f(y)| < ε. Let N be
so big that for all n ≥ N, |Sn − S| < ε/3, |Sin − Si| < ε/3, i = 1, 2, and if
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x,y are any two points in any subrectangle of the nth partition of either
R1, R2, or Q then |f(x) − f(y)| < ε/[3 area(Q)]. Let us consider the nth
regular partition of R1, R2, and Q. These form a collection of subrectangles
that we shall denote by R1

jk, R
2
jk, Rjk, respectively [see Figures 5.6.2 and

5.6.3(a)].

x
a b

c

d

Rjk

(a)

x

y

a b

c

d

b1

Rjk
2

Rαβ

~

(b)

y

Figure 5.6.3. (a) A regular partition of Q. (b) The vertical and horizontal lines of this

subdivision are obtained by taking the union of the vertical and horizontal of Figures

5.6.2 and 5.6.3(a).

If we superimpose the subdivision of Q on the nth subdivisions of R1

and R2, we get a new collection of rectangles, say R̃αβ , β = 1, . . . , n and
α = 1, . . . ,m, where m > n; see Figure 5.6.3(b).

Each R̃αβ is contained in some subrectangle Rjk of Q and in some sub-
rectangle of the nth partition of either R1 or R2. Consider equalities (4),
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(5), and (6) above. These can be rewritten as

Sin =
∑
j,k

∑
R̃αβ⊂Ri

f(cijk) area (R̃αβ) =
∑
α,β

R̃αβ⊂Ri

f(c̃αβ) area (R̃αβ).

where c̃αβ = ciαβ if R̃αβ ⊂ Rijk, i = 1, 2, and

Sn =
∑
j,k

∑
R̃αβ⊂Rjk

f(cjk) area (R̃αβ) =
∑
α,β

f(c∗αβ) area (R̃αβ).

where c∗α,β = cjk if R̃αβ ⊂ Rjk.
For the reader encountering such index notation for the first time, we

point out that ∑
α,β

R̃αβ⊂Ri

means that the summation is taken over those α’s and β’s such that the
corresponding rectangle R̃αβ is contained in the rectangle Ri.

Now the sum for Sn can be split into two parts:

Sn =
∑
α,β

R̃αβ⊂R1

f(c∗αβ) area (R̃αβ) +
∑
α,β

R̃αβ⊂R2

f(c∗αβ) area (R̃αβ).

From these representations and the triangle inequality, it follows that

|Sn − S1
n − S2

n| ≤

∣∣∣∣∣∣∣∣∣
∑
α,β

R̃αβ⊂R1

[f(c∗αβ)− f(c̃αβ)] area(R̃αβ)

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
∑
α,β

R̃αβ⊂R2

[f(c∗αβ)− f(c̃αβ)] area(R̃αβ)

∣∣∣∣∣∣∣∣∣
≤ ε

3 areaQ

∑
α,β

R̃αβ⊂R1

area (R̃αβ)

+
ε

3 areaQ

∑
α,β

R̃αβ⊂R2

area (R̃αβ) <
ε

3
.

In this step we used the uniform continuity of f . Thus |Sn−S1
n−S2

n| < ε/3
for ≥ N . But

|S − Sn| <
ε

3
, |S1

n − S1| < ε

3
and |S2

n − S2| < ε

3
.
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As in Lemma 2, an application of the triangle inequality shows that |S −
S1 − S2| < ε, which completes the proof. �

Example 6. Let C be the graph of a continuous function φ : [a, b]→ R.
Let ε > 0 be any positive number. Show that C can be placed in a finite
union of boxes Bi = [ai, bi]×[ci, di] such that C does not contain a boundary
point of ∪Bi and such that

∑
area(Bi) ≤ ε.

Solution. Let ε > 0. Since f is uniformly continuous there exists a δ,
with 0 < δ < 1 such that if |x−ω| < δ, then |f(x)− f(ω)| < ε/32. (We see
why the “32” as we proceed) — of course in reality one does a sketch of
the idea first and through a trial run one “discovers” that the right number
to put here is indeed 32. Let n > 1/δ and subdivide the interval [a, b] into
2n equal parts with x0 < x1 < . . . < x2n the corresponding partition. Let
Bi be the rectangle centered at (xi, f(xi)) with width 1/n and height ε/4.
The area of each rectangle is ε/4n. There are (2n + 1) such rectangles for
a total area of ( ε

4n

)
(2n+ 1) =

ε

2
+

ε

2n
< ε.

It remains only to check that C does not contain a boundary point of
∪iBi. If the graph touches the top edge of some Box Bi, then there is some
(x, f(x))εBi such that |f(x) − f(xi)| ≥ ε/8 (ε/8 is half the height of Bi).
But by uniform continuity |f(x)− f(xi)| < ε/32 a contradiction.

Similarly if C intersects a vertical side of Bi it must do so in a portion
which is in the complement of Bi−1∪Bi+1. This again contradicts uniform
continuity. �

Exercises.

1. Show that if a and b are two numbers such that for any ε > 0, |a−b| <
ε, then a = b.

2. (a) Let f be the function on the half-open interval (0, 1] defined by
f(x) = 1/x. Show that f is continuous at every point of (0, 1]
but not uniformly continuous.

(b) Generalize this example to R2.

3. Let R be the rectangle [a, b]× [c, d] and f be a bounded function that
is integrable over R.

(a) Show that f is integrable over [(a+ b)/2, b]× [c, d].

(b) Let N be any positive integer. Show that f is integrable over
[(a+ b)/N, b]× [c, d].

Exercises 4 to 6 are intended to give a proof of Theorem 2 of §5.2.
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4. Let C be the graph of a continuous function φ : [a, b]→ R. Let ε > 0
be any positive number. Show that C can be placed in a finite union
of boxes Bi = [ai, bi]×[ci, di] such that C does not contain a boundary
point of ∪Bi and such that Σ area (Bi) ≤ ε. (Hint: Use the uniform
continuity principle presented in this section.)

5. Let R and B be rectangles and let B ⊂ R. Consider the nth regular
partition of R and let bn be the sum of the areas of all rectangles in
the partition that have a nonempty intersection with B. Show that
limn→∞ bn = area(B).

6. Let R be a rectangle and C ⊂ R the graph of a continuous function
φ. Suppose that f : R → R is bounded and continuous except on C.
Use Exercises 4 and 5 above and the techniques used in the proof of
Theorem 1 of this section to show that f is integrable over R.

7. (a) Use the uniform continuity principle to show that if φ : [a, b]→ R
is a continuous function, then φ is bounded.

(b) Generalize part (a) to show that a given continuous function
f : [a, b]× [c, d]→ R is bounded.

(c) Generalize part (b) still further to show that if f : D → R is a
continuous function on a closed and bounded set D ⊂ Rn, then
f is bounded.
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To complete his Habilitation, Riemann had to give a lec-
ture. He prepared three lectures, two on electricity and one on
geometry. Gauss had to choose one of the three for Riemann to
deliver and, against Riemann’s expectations, Gauss (his advi-
sor) chose the lecture on geometry. Riemann’s lecture Über die
Hypothesen welche der Geometrie zu Grunde liegen (On the hy-
potheses that lie at the foundations of geometry), delivered on
10 June 1854, became a classic of mathematics.

There were two parts to Riemann’s lecture. In the first part
he posed the problem of how to define an n-dimensional space
and ended up giving a definition of what today we call a Rie-
mannian space. Freudenthal writes:

It possesses shortest lines, now called geodesics, which re-
semble ordinary straight lines. In fact, at first approximation
in a geodesic coordinate system such a metric is flat Euclidean,
in the same way that a curved surface up to higher-order terms
looks like its tangent plane. Beings living on the surface may
discover the curvature of their world and compute it at any
point as a consequence of observed deviations from Pythagoras’
theorem.

In fact the main point of this part of Riemann’s lecture was
the definition of the curvature tensor . The second part of Rie-
mann’s lecture posed deep questions about the relationship of
geometry to the world we live in. He asked what the dimension
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of real space was and what geometry described real space. The
lecture was too far ahead of its time to be appreciated by most
scientists of that time. Monastyrsky writes:

Among Riemann’s audience, only Gauss was able to appre-
ciate the depth of Riemann’s thoughts. ... The lecture exceeded
all his expectations and greatly surprised him. Returning to the
faculty meeting, he spoke with the greatest praise and rare en-
thusiasm to Wilhelm Weber about the depth of the thoughts that
Riemann had presented.

It was not fully understood until sixty years later. Freuden-
thal writes:

The general theory of relativity splendidly justified his work.
In the mathematical apparatus developed from Riemann’s ad-
dress, Einstein found the frame to fit his physical ideas, his cos-
mology , and cosmogony : and the spirit of Riemann’s address
was just what physics needed: the metric structure determined
by data.

From the Riemann website
http://www-gap.dcs.st-and.ac.uk/~history/

Mathematicians/Riemann.html

Supplement 6.2A
A Challenging Example

Example. Evaluate ∫∫
R

√
x2 + y2dxdy,

where R = [0, 1]× [0, 1].

Solution. This double integral is equal to the volume of the region under
the graph of the function

f(x, y) =
√
x2 + y2

over the rectangle R = [0, 1] × [0, 1]; that is, it equals the volume of the
three-dimensional region shown in Figure 6.1.1.

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Riemann.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Riemann.html
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x

y

z

(0,1)

(1,0)

R

Figure 6.1.1. Volume of the region under z =
√
x2 + y2 and over R = [0, 1]× [0, 1].

As it stands, this integral is difficult to evaluate. Since the integrand
is a simple function of r2 = x2 + y2, we might try a change of variables
to polar coordinates. This will result in a simplification of the integrand
but, unfortunately, not in the domain of the integration. However, the
simplification is sufficient to enable us to evaluate the integral. To apply
Theorem 2 of the text with polar coordinates, refer to Figure 6.1.2.

D1
*

π
2

π
4

r = sec θ

r

θ

D2
*

π
2

π
4

r = csc θ

r

θ

y

x

T

T (1,1)(0,1)

(1,0)

T2

T1

r

θ

Figure 6.1.2. The polar-coordinate transformation takes D∗
1 to the triangle T1 and

D∗
2 to T2.
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The reader can verify that R is the image under T (r, θ) = (r cos θ, r sin θ)
of the region D∗ = D∗1 ∪ D∗2 where for D∗1 we have 0 ≤ θ ≤ 1

4π and
0 ≤ r ≤ sec θ; for D∗2 we have 1

4π ≤ θ ≤ 1
2π and 0 ≤ r ≤ csc θ. The

transformation T sends D∗1 onto a triangle T1 and D∗2 onto a triangle T2.
The transformation T is one-to-one except when r = 0, and so we can
apply Theorem 2. From the symmetry of z =

√
x2 + y2 on R, we can see

that ∫∫
R

√
x2 + y2 dxdy = 2

∫∫
T1

√
x2 + y2 dxdy.

Changing to polar coordinates, we obtain∫∫
T1

√
x2 + y2 dxdy =

∫∫
D∗1

√
r2r drdθ =

∫∫
D∗1

r2 drdθ.

Next we use iterated integration to obtain∫∫
D∗1

r2 drdθ =

∫ π/4

0

[∫ sec θ

0

r2 dr

]
dθ =

1

3

∫ π/4

0

sec3 θ dθ.

Consulting a table of integrals (see the back of the book) to find
∫

sec3 x dx,
we have∫ π/4

0

sec3 θ dθ =

[
sec θ tan θ

2

]π/4
0

+
1

2

∫ π/4

0

sec θ dθ =

√
2

2
+

1

2

∫ π/4

0

sec3 θ dθ.

Consulting the table again for
∫

secx dx, we find

1

2

∫ π/4

0

sec θ dθ =
1

2
[log | sec θ + tan θ|]π/40 =

1

2
log(1 +

√
2).

Combining these results and recalling the factor 1
3 , we obtain∫∫

D∗1

r2 drdθ =
1

3

[√
2

2
+

1

2
log(1 +

√
2)

]
=

1

6
[
√

2 + log(1 +
√

2)].

Multiplying by 2, we obtain the answer∫∫
R

√
x2 + y2 dxdy =

1

3
[
√

2 + log(1 +
√

2)]. �

Instead of using the substitution T , one can alternatively divide the
original square into two triangles T1 and T2 as in the text, write the integral
over T1 as a double integral (first with respect to y, then with respect to
x); in the integral over y, substitute y = xv, then use the standard integral
number 43 at the back of the book.
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Here is another example of the use of the change of variables theorem.

Exercise 15 Evaluate ∫∫
B

exp

(
y − x
y + x

)
dx dy

where B is the inside of the triangle with vertices at (0, 0), (0, 1) and (1, 0).

Solution. Using the change of variables u = y − x, v = y + x, we get
|∂(x, y)/∂(u, v)| = 1/2. Thus,∫∫

B

exp

(
y − x
y + x

)
dx dy =

∫∫
B′

exp
(u
v

) 1

2
du dv

=
1

2

∫ 1

0

∫ v

−v
exp

(u
v

)
du dv

=
1

2

∫ 1

0

(
v exp

(u
v

)∣∣∣v
−v

)
dv

=
1

2

∫ 1

0

v
(
e− e−1

)
dv =

1

4
(e− e−1). �

Supplement 6.2B
The Gaussian Integral

The purpose of this supplement is to prove the equality of the following
two limits

lim
a→∞

∫∫
Da

e−(x2+y2)dx dy = lim
a→∞

∫∫
Ra

e−(x2+y2)dx dy,

which was used in the derivation of the Gaussian integral formula. In the
text, we showed that we showed that

lim
a→∞

∫ ∫
Da

e−(x2+y2)dx dy

exists by directly evaluating it. Thus, it suffices to show that

lim
a→∞

(∫∫
Ra

e−(x2+y2)dx dy −
∫∫

Da

e−(x2+y2)dx dy

)
equals zero. The limit equals

lim
a→∞

∫ ∫
Ca

e−(x2+y2)dx dy,
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y

a

a

Da

Ra

Ca

x

Figure 6.1.3. The region Ca lies between the square Ra and the circle Da.

where Ca is the region between Ra and Da (see Figure 6.1.3).

In the region Ca,
√
x2 + y2 ≥ a (the radius of Da), so e−(x2+y2) ≤ e−a2 .

Thus,

0 ≤
∫ ∫

Ca

e−(x2+y2)dx dy ≤
∫ ∫

Ca

e−a
2

dx dy

= e−a2 area (Ca) = e−a
2

(4a2 − πa2) = (4− π)a2e−a
2

.

Thus it is enough to show that lima→∞ a2e−a
2

= 0. But, by l’Hôpital’s rule

lim
a→∞

a2e−a
2

= lim
a→∞

(
a2

ea2

)
= lim
a→∞

(
2a

2aea2

)
= lim
a→∞

1

ea2
= 0,

as required. �
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Supplement for §7.4
The Problem of Plateau

We end this section by describing the fascinating classic area problem of
Plateau, which has enjoyed a long history in mathematics. The Belgian
physicist Joseph Plateau (1801–1883) carried out many experiments from
1830 to 1869 on surface tension and capillary phenomena, experiments that
had enormous impact at the time and were repeated by notable nineteenth-
century physicists, such as Michael Faraday (1791–1867). The correspond-
ing collection of mathematical problems relating to soap films was named
in 1904 after Plateau by the great French mathematician Henri Lebesgue
(1875–1941).

If a wire is dipped into a soap or glycerine solution, then one usually
withdraws a soap film spanning the wire. Some examples are given in Fig-
ure 7.4.1, although readers might like to perform the experiment for them-
selves. Plateau raised the mathematical question: For a given boundary
(wire), how does one prove the existence of such a surface (soap film) and
how many surfaces can there be? The underlying physical principle is that
nature tends to minimize area; that is, the surface that forms should be a
surface of least area among all possible surfaces that have the given curve
as their boundary. This again is another example of the action principle of
Maupertuis and Leibniz (c.f. Section .3.3)

For soap film surfaces that are disklike, the problem can be formulated
in the following way. Let D ⊂ R2 be the unit disk defined to be the set
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Figure 7.4.1. Two soap films spanning wires.

{(x, y) | x2 + y2 ≤ 1} and let ∂D be its boundary. Furthermore, suppose
that the image Γ of c: [0, 2π]→ R3 is a simple closed curve, Γ representing
a wire in R3.

Let ßS be the set of all maps Φ : D → R3 such that Φ(∂D) = Γ,Φ is of
class C1, and Φ is one-to-one on ∂D. Each Φ ∈ ßS represents a parametric
C1 “disklike” surface “spanning” the wire Γ.

The soap films in Figure 7.4.1 are not disklike, but represent a system
of multiple disklike surfaces. Figure 7.4.2 shows a contour that bounds two
disklike surfaces and one nondisklike surface.

(a) (b) (c)

Figure 7.4.2. Soap film surfaces; (b) and (c) are disklike surfaces, but (a) is not.

For each Φ ∈ ßS, consider the area of the image surface, namely, A(Φ) =∫∫
D
‖Tu×Tv‖ du dv. This area is a function that assigns to each paramet-

ric surface its area. Plateau asked whether A has a minimum on ßS; that
is, does there exist a Φ0 such that A(Φ0) ≤ A(Φ) for all Φ ∈ ßS? Unfortu-
nately, the methods of this book are not adequate to solve this problem. We
can tackle questions of finding minima of real-valued functions of several
variables, but in no way can the set ßS be thought of as a region in Rn for
any n!

In his own study of surfaces of least area, Weierstrass showed that if a
minimum

Φ0(u, v) = (x(u, v), y(u, v), z (u, v))
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existed at all, it would have to satisfy (after suitable normalizations) the
partial differential equations

(i) ∇2Φ0 = 0

(ii)
∂Φ0

∂u
· ∂Φ0

∂v
= 0

(iii)

∥∥∥∥∂Φ0

∂u

∥∥∥∥ =

∥∥∥∥∂Φ0

∂v

∥∥∥∥
where ‖w‖ denotes the “norm” or length of the vector w. This exam-
ple illustrates the intimate connections between problems of maxima and
minima (the calculus of variations) and the subject of partial differential
equations.

For well over 70 years, mathematicians such as Riemann, Weierstrass,
H. A. Schwarz, Darboux, and Lebesgue puzzled over the challenge posed
by Plateau. In 1931 the question was finally settled when Jesse Douglas
showed that such a Φ0 existed. However, many questions about soap films
remain unsolved, and this area of research is still active today.1

1For more information on this fascinating subject, the reader may consult The Par-

simonious Universe: Shape and Form in the Natural World, by S. Hildebrandt and A.

Tromba, Springer-Verlag, New York/Heidelberg, 1995.
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8
The Integral Theorems of Vector
Analysis

George Green (1793–1841), a self-taught English mathe-
matician, undertook to treat static electricity and magnetism in
a thoroughly mathematical fashion. In 1828 Green published a
privately printed booklet, An essay on the Application of Math-
ematical Analysis to the Theories of Electricity and Magnetism.
This was neglected until Sir William Thomson (Lord Kelvin,
1824–1907) discovered it, recognized its great value, and had
it published in the Journal für Mathematik starting in 1850.
Green, who learned much from Poisson’s papers, also carried
over the notion of the potential function to electricity and mag-
netism.

Morris Klein
Mathematical Thought from Ancient to Modern Times

Supplement for §8.2
Reorienting Astronauts

Reorienting Astronauts Another example to help visualize this effect
is to consider astronauts who wish to reorient themselves in a free-space
environment. As with the falling cat, this motion can again be achieved
using internal gyrations, or shape changes. For instance, consider astronauts
moving their arms much like the motion of arms stirring liquid in a large
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kettle. The arms are held out forward, to lie in a horizontal plane that
goes through the shoulders, parallel to the floor; the hands are clasped
together and remain in this horizontal plane during the circular stirring
motion. At the point of maximum extension of the arms, the inertia of the
body about a vertical axis is also at a maximum. Conservation of angular
momentum requires that the body rotate in an opposite and proportional
manner to the motion of the arms. As the arms rotate around and are
brought in, however, the inertia of the body is reduced. The motion of the
body in reaction is therefore also reduced. Thus, in one complete cycle of
arm movement, the body undergoes a net rotation opposite the direction of
arm motion. When the desired orientation is achieved, the astronaut needs
merely to stop the arm motion in order to come to rest. One often refers
to the extra motion that is achieved as geometric phase.

L
¯

ink with Non-Euclidean Geometry The theory of geometric phases also
shows up in an interesting way in non-Euclidean geometry—as in the geom-
etry of triangles drawn on a sphere. A simple way to explain this link is as
follows. Hold your hand at arm’s length, but allow rotation in your shoulder
joints. Move your hand along three great circles, forming a triangle on the
sphere; during the motion along each arc, always keep your thumb parallel;
that is, it should move in such a way that it forms a fixed angle with the
direction of motion along each arc and does not rotate when switching arcs.
After completing the circuit around the triangle, your thumb will return
rotated through an angle relative to its starting position (see Figure 8.2.13).
Can you see in Figure 8.2.13 that the angle of rotation is 90◦ (or π/2 ra-
dians) and that this is what happens when you do the thumb experiment
yourself?

area = A

Finish

Start

Figure 8.0.1. A parallel movement of your thumb around a spherical triangle
produces a phase shift.

For general spherical triangles, this angle (in radians) is given by Θ =
∆− π, where ∆ is the sum of the angles of the triangle. The fact that Θ is
strictly positive (!) is one of the basic truths of non-Euclidean geometry—
the sum of the angles of a right triangle on a sphere is greater than π! This
angle is also related to the area A enclosed by the triangle through the
relation Θ = A/r2, where r is the radius of the sphere. The rotational shift



8.3 Exact Differentials 97

of the thumb during the course of its cyclic journey around the spherical
triangle is directly related to the curvature of the sphere and to the area
enclosed by the path that is traced out. Notice first that for a spherical
triangle that is 1/8 of the sphere, A = 4πr2/8 = πr2/2. Thus, A/r2 =
π/2. Notice also that when r → ∞, the sphere becomes flatter and thus
approaches a Euclidean plane, in which case Θ = 0.

The cyclic journey of the thumb around the closed path is analogous to
the cyclic internal motions made by the cat during its fall; the 90◦ shift
in the direction of the thumb after one trip around is analogous to the
180◦ reorientation of the cat. A deeper look at the underlying mathematics
shows that, in fact, they are both instances of the same phenomenon (called
holonomy)—and Stokes’ theorem is the key to understanding it.

Supplement for §8.3
Exact Differentials

The main theoretical point is that, to solve a differential equation in the
variables (x, y) of the form

P (x, y) +Q(x, y)
dy

dx
= 0, (8.2.1)

we proceed as follows: first we test to see if Pdx+Qdy is exact; that is, if
the corresponding vector field P i +Qj is conservative. If it is, then there is
a function f(x, y) such that

P =
∂f

∂x
; Q =

∂f

∂y
.

Recall that the test for exactness is

∂P

∂y
=
∂Q

∂x
.

and that this corresponds to equality of mixed partial derivatives of f .
If the equation is exact and we find a corresponding f , then the equa-

tion f(x, y) = constant implicitly defines solutions as level sets of f . This
assertion is readily checked by implicit differentiation as follows. If x and
y are each functions of t and lie on the surface constant = f(x, y), then
differentiating both sides and using the chain rule gives

0 =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= P

dx

dt
+Q

dy

dt
.

In fact, this is one possible way to interpret equation (8.2.1). If y is a
function of x and we similarly differentiate the equation constant = f(x, y)
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with respect to x and use the chain rule in a similar way, then we literally
get equation (8.2.1).

Example 1. Solve the following differential equation satisfying the given
conditions:

cos y sinx+ sin y cosx
dy

dx
= 0, y

(π
4

)
= 0.

Solution. The equation is exact, since

∂P

∂y
=

∂

∂y
(cos y sinx) = − sin y sinx,

and
∂Q

∂x
=

∂

∂x
(sin y cosx) = − sin y cosx.

The function f(x, y) such that P = ∂f/∂x and Q = ∂f/∂y can then be
found by integration:∫

P dx =

∫
cos y sinx dx = − cos y cosx+ g(y) + C1

∫
Qdy =

∫
sin y cosx dy = − cos y cosx+ h(x) + C2,

where g(y) is a function of y only (which will show up when integrating Q
with respect to y), h(x) is a function of x only (which will show up when
integrating P with respect to x), and C2 and C2 are two constants. Compare
those two results, we find that f(x, y) = − cos y cosx = C, a constant. Since
y = 0 when x = π/4, we find that C = − cos 0 · cos(π/4) = −1/

√
2, thus,

the solution is defined by cos y cosx = 1/
√

2. �

Sometimes multiplying an equation by an appropriate factor can make
it exact. Such factors are called integrating factors.

Example 2. Solve the equation

x
dy

dx
= xy2 + y

by using the integrating factor 1/y2.

Solution. The integrating factor 1/y2 makes our equation exact. To check
this, first multiply and then check for exactness: The equation is

x

y2

dy

dx
− x− 1

y
= 0.
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Now,
∂

∂y

(
−x− 1

y

)
=

1

y2
;

and
∂

∂x

(
x

y2

)
=

1

y2
.

Thus, the equation is exact. To find an antiderivative, write∫ (
−x− 1

y

)
dx = −x

2

2
− x

y
+ g1(y), (8.2.2)

∫
x

y2
dy = −x

y
+ g2(x). (8.2.3)

Comparing (8.2.2) and (8.2.3), we see that if g2(x) = −x2/2 and g1(y) = C,
a constant, then the equation is solved, and so the solution is defined by
the level curves of f , i.e.,

f(x, y) =
x

y
+
x2

2
= C. �
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Supplement for §8.5
Green’s Functions

Some Differential Equations of Mechanics
and Technology

Isaac Newton reputedly said, “All in nature reduces to differential equa-
tions.” This point of view was paraphrased by Max Planck (see the Histori-
cal Note in Section 3.3): “. . . Present day physics, as far as it is theoretically
organized, is completely governed by a system of space–time differential
equations.”

In this section, we apply the central theorems of vector analysis to the
derivation of the differential equations governing heat transfer, electromag-
netism, and the motion of some fluids.

Keep in mind the importance of these problems in modern technology.
For example, a good understanding of fluids and the ability to do compu-
tations to solve their governing equations is at the heart of how one builds
a modern airplane or designs a submarine. For instance, the flow of air (the
fluid in this case) over the wings of an aircraft is very subtle, even though
the governing equations are relatively simple. We shall derive a slightly
idealized form of these equations in this section. Likewise, the equations of
electromagnetism, as we will discuss in the following paragraphs, is central
to the communications industry; wireless, television, and much of the oper-
ation of modern electronic devices, including computers, depends on these
and related fundamental equations.

Conservation Laws

As preparation for deriving the equations of a fluid, let us first discuss
an important equation that is referred to as a conservation equation. For
fluids, it expresses the conservation of mass; for electromagnetic theory,
it expresses the conservation of charge. We shall apply these ideas to the
equation for heat conduction and to electromagnetism.

Let V(t, x, y, z) be a C1 vector field on R3 for each t and let ρ(t, x, y, z)
be a C1 real-valued function. By the law of conservation of mass for V and
ρ, we mean that the condition

d

dt

∫∫∫
W

ρdV = −
∫∫

∂W

J ·n dS

holds for all regions W in R3, where J = ρV (see Figure 8.5.1).
If we think of ρ as a mass density (ρ could also be a charge density)—

that is, the mass per unit volume—and of V as the velocity field of a fluid,
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J

mass in W =         ρ ������������dx dy dz

W

dS
J n = mass flowing

out of W per unit

area per unit time

.W
∫∫∫

Figure 8.5.1. The rate of change of mass in W equals the rate at which mass
crosses ∂W.

the condition simply says that the rate of change of total mass in W equals
the rate at which mass flows into W. Recall that

∫∫
∂W

J ·n dS is called the
flux of J. We need the following result.

8.5.1 Theorem. For V and ρ (a smooth vector field and a scalar field
on R3), the law of conservation of mass for V and ρ is equivalent to the
condition

div J +
∂ρ

∂t
= 0. (8.5.1)

That is,

ρ div V + V · ∇ρ+
∂ρ

∂t
= 0. (1′)

Here, div J means that we compute div J for t held fixed, and ∂ρ/∂t
means we differentiate ρ with respect to t for x, y, z fixed.

Proof. First, observe that by differentiating under the integral, we get

d

dt

∫∫∫
W

ρ dx dy dz =

∫∫∫
W

∂ρ

∂t
dx dy dz

and also ∫∫
∂W

J ·n dS =

∫∫∫
W

div J dV

by the divergence theorem. Thus, conservation of mass is equivalent to the
condition ∫∫∫

W

(
div J +

∂ρ

∂t

)
dx dy dz = 0.

Because this is to hold for all regions W, it is equivalent to div J + ∂ρ/∂t =
0. �

The equation div J + ∂ρ/∂t = 0 is called the equation of continuity. An
interesting remark is that using the change of variables formula, the law of
conservation of mass may be shown to be equivalent to the condition

d

dt

∫∫∫
Wt

ρ dV = 0,
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where Wt is the image of W obtained by moving each point in W along flow
lines of V for time t. This result is a special case of the transport theorem
that we discuss next.

The Transport Theorem

The transport theorem is an interesting application of the divergence the-
orem that will be needed in our derivation of the equations of a fluid.

8.5.2 Theorem. Let F be a vector field on R3 and denote the flow line
of F start- ing at x after time t by φ(x, t). (See the Internet supplement to
Section 4.4 for more information.) Let J(x, t) be the Jacobian of the map
φt: x 7→ φ(x, t) for t fixed. Then

∂

∂t
J(x, t) = [div F(φ(x, t))]J(x, t).

For a given function f(x, y, z, t) and a region W ⊂ R3, the transport equa-
tion holds:

d

dt

∫∫∫
Wt

f(x, y, z, t) dx dy dz =

∫∫∫
Wt

(
Df

Dt
+ f div F

)
dx dy dz,

where Wt = φt(W ), which is the region moving with the flow, and where

Df

Dt
= ∂f/∂t+∇f ·F

is the material derivative.

Taking f = 1, Theorem 12 implies that the following assertions are
equivalent (which justifies the use of the term incompressible):

1. div F = 0

2. volume (Wt) = volume (W )

3. J(x, t) = 1

Let φ, J, F, f be as just defined. There is also a vector form of the
transport theorem, namely,

d

dt

∫∫∫
Wt

(fF) dx dy dz

=

∫∫∫
Wt

[
∂

∂t
(fF) + F · ∇(fF) + (fF) div F

]
dx dy dz,
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where F · ∇(fF) denotes the 3× 3 derivative matrix D(fF) operating on
the column vector F; in Cartesian coordinates, F · ∇G is the vector whose
ith component is

3∑
j=1

Fj
∂Gi

∂xj
= F1

∂Gi

∂x
+ F2

∂Gi

∂y
+ F3

∂Gi

∂z
.

We shall leave the proofs of these results, which are extensions of the ar-
guments used to prove Theorem 11, to the reader (see the exercises).

Derivation of Euler’s Equation of a Perfect
Fluid

The continuity equation is not sufficient to completely determine the mo-
tion of a fluid—we need other conditions.

The fluids that the continuity equation governs can be compressible. If
div V = 0 (incompressible case) and ρ is constant, equation (1′) follows
automatically. But in general, even for incompressible fluids, the equation
is not automatic, because ρ can depend on (x, y, z) and t. Thus, even if the
equation div V = 0 holds, div (ρV) 6= 0 may still be true.

Here we discuss Euler’s equation for a perfect fluid. Consider a nonviscous
fluid moving in space with a velocity field V. When we say that the fluid
is perfect, we mean that if W is any portion of the fluid, forces of pressure
act on the boundary of W along its normal. We assume that the force per
unit area acting on ∂W is –pn, where p(x, y, z, t) is some function called
the pressure (see Figure 8.5.2). Thus, the total pressure force acting on W
is

F∂W = force = −
∫∫

∂W

pn dS .

This is a vector quantity; the ith component of F∂W is the integral of
the ith component of pn over the surface ∂W (this is therefore the surface
integral of a real-valued function). If e is any fixed vector in space, we have

F∂W · e = −
∫∫

∂W

pe ·n dS,

which is the integral of a scalar over ∂W. By the divergence theorem and
identity (7) in the table of vector identities (Section 4.4), we get

E ·F∂W = −
∫∫∫

W

div (pE) dx dy dz = −
∫∫∫

W

(grad p) ·E dx dy dz,

so that

F∂W = −
∫∫∫

W

∇p dx dy dz.
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A portion of ∂W

n

The forces exerted on W

by the fluid occur across

∂W in the direction n.

Figure 8.5.2. The force acting on ∂W per unit area is −pn.

Now we apply Newton’s second law to a moving region Wt. As in the trans-
port theorem, Wt = φt(W ), where φt(x) = φ(x, t) denotes the flow of V.
The rate of change of momentum of the fluid in Wt equals the force acting
on it:

d

dt

∫∫∫
Wt

pV dx dy dz = F∂Wt
=

∫∫∫
Wt

∇p dx dy dz.

We apply the vector form of the transport theorem to the left-hand side to
get

∫∫∫
Wt

[
∂

∂t
(ρV) + V · ∇(ρV) + pV div V

]
dx dy dz = −

∫∫∫
Wt

∇p dx dy dz.

Because Wt is arbitrary, this is equivalent to

∂

∂t
(ρV) + V · ∇(ρV) + ρV div V = −∇p.

Simplification using the equation of continuity, namely, formula (1′), gives

ρ

(
∂V

∂t
+ V · ∇V

)
= −∇p. (8.5.2)

This is Euler’s equation for a perfect fluid. For compressible fluids, p is a
given function of ρ (for instance, for many gases, p = Aργ for constants
A and γ). On the other hand, if the fluid is incompressible, ρ is to be
determined from the condition div V = 0. Equations (1) and (2) then
govern the motion of the fluid.
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The equations describing the motion of a fluid were first derived by Leon-

hard Euler in 1755, in a paper entitled “General Principles of the Motion of
Fluids.” Euler did basic work in mechanics as well as voluminous work in
pure mathematics, a small part of which has already been discussed in this
book; he essentially began the subject of analytical mechanics (as opposed
to the Euclidean geometric methods used by Newton). He is responsible
for the equations of a rigid body (equations that apply, for example, to a
tumbling satellite) and the formulation of many basic equations of mechan-
ics in terms of variational principles; that is, by the methods of maxima
and minima of real-valued functions. Euler wrote the first comprehensive
textbook on calculus and contributed to virtually all branches of mathe-
matics. He wrote several books and hundreds of research papers even after
he became totally blind, and he was working on a new treatise on fluid me-
chanics at the time of his death in 1783. Euler’s equations for a fluid were
eventually modified by Navier and Stokes to include viscous effects; the re-
sulting Navier–Stokes equations are described in virtually every textbook
on fluid mechanics.7 Stokes is, of course, also responsible for developing
Stokes’ theorem, one of the main results discussed in this text!

Conservation of Energy and the Derivation of
the Heat Equation

If T (t, x, y, z) (a C2 function) denotes the temperature in a body at time
t, then ∇T represents the temperature gradient: Heat “flows” with the
vector field −∇T = F. Note that∇T points in the direction of increasing T.
Because heat flows from hot to cold, we have inserted a minus sign to reflect
this physically observable fact. The energy density, that is, the energy per
unit volume, is cρ0T , where c is a constant (called the specific heat) and
ρ0 is the mass density, assumed constant. (We accept these assertions from
elementary physics.) The energy flux vector is defined to be J = kF, where
k is a constant called the conductivity.

One now makes the hypothesis that energy is conserved. This means that
J and ρ = cρ0T should obey the law of conservation of mass, with ρ playing
the role of “mass” (note that it is energy density, not mass); that is,

d

dt

∫∫∫
W

ρ dV = −
∫∫

∂W

J ·n dS.

By Theorem 11, this assertion is equivalent to

div J +
∂ρ

∂t
= 0.

7The Clay Foundation has offered a prize of $1 million to anyone who shows that
for the incompressible Navier–Stokes equations, smooth data at t = 0 lead to smooth

solutions for all t > 0.
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But
div J = div (−k∇T ) = −k∇2T.

(Recall that ∇2T = ∂2T/∂x2 + ∂2T/∂y2 + ∂2T/∂z2 and ∇2 is the Laplace
operator.) Continuing, we have

∂ρ

∂t
=
∂(cρ0T )

∂t
= cρ0

∂T

∂t
.

Thus, the equation div J + ∂ρ/∂t = 0 becomes

∂T

∂t
=

k

cρ0
∇2T = k∇2T, (3)

where κ = k/cρ0 is called the diffusivity. Equation (3) is the important
heat equation.

Just as equations (1) and (2) govern the flow of an ideal fluid, equation
(3) governs the conduction of heat in the following sense. If T (0, x, y, z)
is a given initial temperature distribution, then a unique T (t, x, y, z) is
determined that satisfies equation (3). In other words, the initial condition
at t = 0 gives the result for t ¿ 0. Notice that if T does not change with time
(the steady-state case), then we must have ∇2T = 0 (Laplace’s equation).

Next we show how vector analysis can be used to solve differential equa-
tions by a method called potential theory or the Green’s-function
method. The presentation will be quite informal; the reader may consult
references, such as

G.F.D. Duff and D. Naylor, Differential Equations of Applied Mathemat-
ics, Wiley, New York, 1966,

R. Courant and D. Hilbert, Methods of Mathematical Physics. Volumes I
and II, John Wiley & Sons Inc., New York, 1989. Wiley Classics Li-
brary, Reprint of the 1962 original, A Wiley-Interscience Publication.

for further information.

Suppose we wish to solve Poisson’s equation

∇2u = ρ

for u(x, y, z), where ρ(x, y, z) is a given function. Recall that this equation
arises from Gauss’ Law if E = ∇u and also in the problem of determining
the gravitational potential from a given mass distribution.

A function G(x,y) that has the properties

G(x,y) = G(y,x) and ∇2G(x,y) = δ(x− y) (4)

(in this expression y is held fixed, that is, which solves the differential equa-
tions with ρ replaced by δ, is called Green’s function for this differential
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equation. Here ρ(x−y) represents the Dirac delta function, “defined” by8

(i) δ(x− y) = 0 for x 6= y

and

(ii)

∫∫∫
R3

δ(x− y) dy = 1.

It has the following operational property that formally follows from condi-
tions (i) and (ii): For any continuous function f(x),∫∫∫

R3

f(y)δ(x− y) dy = f(x). (5)

This is sometimes called the sifting property of δ.

Theorem 1. If G(x,y) satisfies the differential equation ∇2u = ρ with
ρ replaced by δ(x− y), then

u(x) =

∫∫∫
R3

G(x,y)ρ(y) dy (6)

is a solution to ∇2u = ρ.

Proof. To see this, note that

∇2

∫∫∫
R3

G(x,y)ρ(y) dy =

∫∫∫
R3

(∇2G(x,y)ρ(y) dy

=

∫∫∫
R3

δ(x− y)ρ(y) dy (by 4)

= ρ(x) (by 5)

�

The “function” ρ(x) = δ(x) represents a unit change concentrated at a
single point [see conditions (i) and (ii), above]. Thus G(x,y) represents the
potential at x due to a charge placed at y.

Green’s Function in R3. We claim that equation (4) is satisfied if we
choose

G(x,y) = − 1

4π‖x− y)‖
.

Clearly G(x,y) = G(y,x). To check the second part of equation (4), we
must verify that ∇2G(x,y) has the following two properties of the δ func-
tion:

8This is not a precise definition; nevertheless, it is enough here to assume that δ

is a symbolic expression with the operational property shown in equation (5). See the

references in the preceding footnote for a more careful definition of δ.
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(i) ∇2G(x,y) = 0 for x 6= y

and

(ii)
∫∫∫

R3 ∇2G(x,y) = 1.

We will explain the meaning of (ii) in the course of the following discus-
sion. Property (i) is true because the gradient of G is

∇G(x,y) =
r

4πr3
, (7)

where r = x − y is the vector from y to x and r = ‖r‖ (see Exercise 30,
§4.4), and therefore for r 6= 0,∇ · ∇G(x,y) = 0 (as in the aforementioned
exercise). For property (ii), let B be a ball about x; by property (i),∫∫∫

R3

∇2G(x,y) dy =

∫∫∫
B

∇2G(x,y) dy.

This, in turn, equals ∫∫
∂B

∇2G(x,y) · n dS.

by Gauss’ Theorem. Thus, making use of (7), we get∫∫
∂B

∇2G(x,y) · n dS =

∫∫
∂B

r · n
4πr3

dS = 1,

which proves property (ii). Therefore, a solution of ∇2u = ρ is

u(x) =

∫∫∫
R3

−ρ(y)

4π‖x− y‖
dy. (8)

by Theorem 1.

Green’s Function in Two Dimensions. In the plane rather than in
R3, one can similarly show that

G(x,y) =
1

2π
log ‖x− y‖, (9)

and so a solution of the equation ∇2u = ρ is

u(x) =
1

2π

∫∫
R2

ρ(y) log ‖x− y‖ dy.

Green’s Identities. We now turn to the problem of using Green’s func-
tions to solve Poisson’s equation in a bounded region with given boundary
conditions. To do this, we need Green’s first and second identities, which
can be obtained from the divergence theorem (see Exercise 15, §8.4). We
start with the identity∫∫∫

V

∇ · F dV =

∫∫
S

F · n dS.
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where V is a region in space, S is its boundary, and n is the outward unit
normal vector. Replacing F by f∇g, where f and g are scalar functions,
we obtain ∫∫∫

V

∇f · ∇g dV +

∫∫∫
V

f∇2g dV =

∫∫
S

f
∂g

∂n
dS. (10)

where ∂g/∂n = ∇g · n. This is Green’s first identity. If we simply per-
mute f and g and subtract the result from equation (10), we obtain Green’s
second identity,∫∫∫

V

(f∇2g − g∇2f) dV =

∫∫
S

(
f
∂g

∂n
− ∂f

∂n

)
dS, (11)

which we shall use shortly.

Green’s Functions in Bounded Regions. Consider Poisson’s equa-
tion∇2u = ρ in some region V , and the corresponding equations for Green’s
function

G(x,y) = G(y,x) and ∇2G(x,y) = δ(x− y).

Inserting u and G into Green’s second identity (11), we obtain∫∫∫
V

(u∇2G−G∇2u) dV =

∫∫
S

(
u
∂G

∂n
−G∂u

∂n

)
dS.

Choosing our integration variable to be y and using G(x,y) = G(y,x),
this becomes∫∫∫

V

[u(y)δ(x− y)−G(x,y)ρ(y)] dy =

∫∫
S

(
u
∂G

∂n
−G∂u

∂n

)
dS;

and by equation (5),

u(x) =

∫∫∫
V

G(x,y)ρ(y) dy +

∫∫
S

(
u
∂G

∂n
−G∂u

∂n

)
dS. (12)

Note that for an unbounded region, this becomes identical to our previous
result, equation (6), for all of space. Equation (12) enables us to solve for
u in a bounded region where ρ = 0 by incorporating the conditions that u
must obey on S.

If ρ = 0, equation (12) reduces to

u =

∫∫
S

(
u
∂G

∂n
−G∂u

∂n

)
dS,

or, fully,

u(x) =

∫∫
S

[
u(y)

∂G

∂n
(x,y)−G(x,y)

∂u

∂n
(y)

]
dS, (13)
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where u appears on both sides of the equation and the integration variable
is y. The crucial point is that evaluation of the integral requires only that
we know the behavior of u on S. Commonly, either u is given on the bound-
ary (for a Dirichlet problem) or ∂u/∂n is given on the boundary (for a
Neumann problem. If we know u on the boundary, we want to make
G∂u/∂n vanish on the boundary so we can evaluate the integral. Therefore
if u is given on S we must find a G such that G(x,y) vanishes whenever y
lies on S. This is called the Dirichlet Green’s function for the region
V . Conversely, if ∂u/∂n is given on S we must find a G such that ∂G/∂n
vanishes on S. This is the Neumann Green’s function.

Thus, a Dirichlet Green’s function G(x,y) is defined for x and y in the
volume V and satisfies these three conditions:

(a) G(x,y) = G(y,x),

(b) ∇2G(x,y) = δ(x− y),

(c) G(x,y) = 0 when y lies on S, the boundary of the region V .

[Note that by condition (a), in conditions (b) and (c) the variables x and
y can be interchanged without changing the condition.]

It is interesting to note that condition (a) is actually a consequence of
conditions (b) and (c), provided (b) and (c) also hold with x and y inter-
changed.

To see this, we fix points y and w and use equation (11) with f(x) =
G(x,y) and g(x) = G(w,x). By condition (b),

∇2f(x) = δ(x− y) and ∇2g(x) = δ(x−w),

and by condition (c), f and g vanish when x lies on S and so the right hand
side of (11) is zero. On the left hand side, we substitute f(x) and g(x) to
give ∫∫∫

V

[G(x,y)δ(x−w)−G(w,x)δ(x− y)] dx = 0

which gives
G(w,y) = G(y,w),

which is the asserted symmetry of G. This means, in effect, that if (b) and
(c) hold with x and y internchanged, then it is not necessary to check con-
dition (a). (This result is sometimes called the principle of reciprocity.)

Solving any particular Dirichlet or Neumann problem thus reduces to the
task of finding Laplace’s equations on all of R2 or R3, namely, equations
(8) and (9).

Green’s Function for a Disk. We shall now use the two-dimensional
Green’s function method to construct the Dirichlet Green’s function for the
disk of radius R (see Figure 8.5.3). This will enable us to solve ∇2u = 0
(or ∇2u = ρ) with u given on the boundary circle.
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Figure 8.5.3. Geometry of the construction of Green’s function for a disk.

In Figure 8.5.3 we have draw the point x on the circumference because
that is where we want G to vanish. [According to the procedure above,
G(x,y) is supposed to vanish when either x or y is on C. We have chosen
x on C to begin with.] The Green’s function G(x,y) that we shall find
will, of course, be valid for all x,y in the disk. The point y′ represents
the “reflection” of the point y into the region outside the circle, such that
ab = R2. Now when x ∈ C, by the similarity of the triangles xOy and
xOy′,

r

R
=
r′′

b
, that is, r =

r′′R

b
=
r′′a

R
.

Hence, if we choose our Green’s function to be

G(x,y) =
1

2π

(
log r − log

r′′a

R

)
, (14)

we see thatG is zero if x is on C. Since r′′a/R reduces to r when y is on C,G
also vanishes when y is on C. If we can show that G satisfies∇2G = δ(x−y)
in the circle, then we will have proved that G is indeed the Dirichlet Green’s
function. From equation (9) we know that ∇2(logr)/2π = δ(x−y), so that

∇2G(x,y) = δ(x− y)− δ(x− y′),

but y′ is always outside the circle, and so x can never be equal to y′ and
δ(x− y′) is always zero. Hence,

∇2G(x,y) = δ(x− y)

and thus G is the Dirichlet Green’s function for the circle.
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Now we shall consider the problem of solving

∇2u = 0

in this circle if u(R, θ) = f(θ) is the given boundary condition. By equation
(13) we have a solution

u =

∫
C

(
u
∂G

∂n
−G∂u

∂n

)
ds.

But G = 0 on C, and so we are left with the integral

u =

∫
C

u
∂G

∂n
ds,

where we can replace u by f(θ), since the integral is around C. Thus the
task of solving the Dirichlet problem in the circle is reduced to finding
∂G/∂n. From equation (14) we can write

∂G

∂n
=

1

2π

(
1

r

∂r

∂n
− 1

r′′
r′′

∂n

)
.

Now
∂r

∂n
= ∇r · n and ∇r =

r

r
,

where r = x− y, and so

∂r

∂n
=

r · n
r

=
r cos(nr)

r
= cos(nr),

where (nr) represents the angle between n and r. Likewise,

∂r′′

∂n
= cos(nr′′).

In triangle xyO, we have, by the cosine law, a2 = r2 + R2 − 2rR cos(nr),
and in triangle xy′0, we get b2 = (r′′)2 +R2 − 2r′′R cos(nr′′), and so

∂r

∂n
= cos(nr) =

R2 + r2 − a2

2rR
and

∂r′′

∂n
= cos(nr′′) =

R2 + (r′′)2 − a2

2r′′R
.

Hence
∂G

∂n
=

1

2π

[
R2 + r2 − a2

2rR
− R2 + (r′′)2 − a2

2r′′R

]
.

Using the relationship between r and r′′ when x is on C, we get

∂G

∂n

∣∣∣∣
x∈C

=
1

2π

(
R2 − a2

Rr2

)
.
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Thus the solution can be written as

u =
1

2π

∫
C

f(θ)
R2 − a2

Rr2
ds.

Let us write this in a more useful form. Note that in triangle xy0, we can
write

r = [a2 +R2 − 2aR cos(θ − θ′)]1/2,

where θ and θ′ are the polar angles in x and y space, respectively. Second,
our solution must be valid for all y in the circle; hence the distance of y
from the origin must now become a variable, which we shall call r′. Finally,
note that ds = R dθ on C, so we can write the solution in polar coordinates
as

u(r′, θ′) =
R2 − (r′)2

2π

∫ 2π

0

f(θ) dθ

(r′)2 +R2 − 2r′R cos(θ − θ′)
.

This is know as Poisson’s formula in two dimensions.9 As an exercise,
the reader should use this to write down the solution of ∇2u = ρ with u a
given function f(θ) on the boundary.

Exercises

1. Use a direct argument (or the proof of Theorem 1 in the Internet
supplement to Section 4.4) to show that

∂

∂t
J(x, t) = [div F(φ(x, t))]J(x, t).

9There are several other ways of deriving this famous formula. For the method of
complex variables, see J. Marsden and M. Hoffman, Basic Complex Analysis, 2d ed.,
Freeman, New York, 1987, p. 195. For the method of Fourier series, see J. Marsden,

Elementary Classical Analysis, Freeman, New York, 1974, p. 466.
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2. Using the change of variables theorem and Exercise 1, show that if
f(x, y, z, t) is a given function and W ⊂ R3 is any region, then the
transport equation holds:

d

dt

∫∫∫
Wt

f(x, y, z, t) dx dy dz =

∫∫∫
Wt

(Df
Dt

+ fdiv F
)
dx dy dz

where Wt = φt(W ), which is the region moving with the flow, and
where Df/Dt = ∂f/∂t+∇f ·F is the material derivative.

3. Use the transport equation to show that

d

dt

∫∫∫
Wt

ρ dx dy dz = 0

is equivalent to the law of conservation of mass.

4. Using Exercise 3 and the change of variables theorem, show that
ρ(x, t) can be expressed in terms of the Jacobian J(x, t) of the flow
map φ(x, t) and ρ(x, 0) by the equation

ρ(x, t)J(x, t) = ρ(x, 0).

What can you conclude from this for incompressible flow?

5. Prove the vector form of the transport theorem, namely,

d

dt

∫∫∫
Wt

(fF) dx dy dz =

∫∫∫
Wt

[ ∂
∂t

(fF)+F · ∇(fF)+(fF) div F
]
dx dy dz,

where F · ∇(fF) denotes the 3×3 derivative matrix D (fF) operating
on the column vector F; in Cartesian coordinates, F · ∇G is the vector
whose ith component is

3∑
j=1

Fj
∂Gi

∂xj
= F1

∂Gi

∂x
+ F2

∂Gi

∂y
+ F3

∂Gi

∂z
.

6. Let V be a vector field with flow φ(x, t) and let V and ρ satisfy the
law of conservation of mass. Let Wt be the region transported with
the flow. Prove the following version of the transport theorem:

d

dt

∫∫∫
Wt

ρf dx dy dz =

∫∫∫
Wt

ρ
Df

Dt
dx dy dz.

7. (Bernoulli’s law) (a) Let V, ρ satisfy the law of conservation of mass
and equation (2) (Euler’s equation for a perfect fluid). Suppose V is
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irrotational and hence that V = ∇φ for a function φ. Show that if C
is a path connecting two points P1 and P2, then(∂φ

∂t
+

1

2
‖V‖2

)∣∣∣P2

P1

+

∫
C

dp

ρ
= 0.

[Hint: You may need the vector identity, (V · ∇)V = 1
2∇(‖V‖2) +

(∇×V)×V.]

(b) If in part (a), V is stationary—that is, ∂V/∂t = 0—and ρ is
constant, show that

1

2
‖V‖2 +

p

ρ

is constant in space. Deduce that, in this situation, higher pressure is
associated with lower fluid speed.

8. Using Exercise 7, show that if φ satisfies Laplace’s equation ∇2φ = 0,
then V = ∇φ is a stationary solution to Euler’s equation for a perfect
incompressible fluid with constant density.

9. Verify that Maxwell’s equations imply the equation of continuity for
J and ρ.

10. (a) With notation as in Figure 8.5.3, show that the Dirichlet prob-
lem for the sphere of radius R in three dimensions has Green’s
function

G(x,y) =
1

4π

(
R

ar′′
− 1

r

)
.

(b) Prove Poisson’s formula in three dimensions:

u(y) =
R(R2 − a2)

4π

∫ 2π

0

∫ π

0

f(θ, φ) sinφ dθdφ

(R2 − a2 − 2Ra cos γ)3/2

11. Let H denote the upper half space z ≥ 0. For a point x = (x, y, z)
in H, let R(x) = (x, y,−z), the reflection of x in the xy plane. Let
G(x,y) = −1/(4π‖x− y‖) be the Green’s function for all of R3.

(a) Verify that the function G̃ defined by

G̃(x,y) = G(x,y)−G(R(x),y)

is the Green’s function for the Laplacian in H.

(b) Write down a formula for the solution u of the problem

∇2u = ρ in H, and u(x, y, 0) = φ(x, y).
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Exercises 3 through 9 give some sample applications of vector calculus
to shock waves.10

12. Consider the equation
ut + uux = 0

for a function u(x, t),−∞ < x < ∞, t ≥ 0, where ut = ∂u/∂t and
ux = ∂u/∂x. Let u(x, 0) = u0(x) be the given value of u at t = 0.
The curves (x(s), t(s)) in the xt plane defined by

ẋ = u, ṫ = 1

are called characteristic curves (the overdot denotes the derivative
with respect to s).

(a) Show that u is constant along each characteristic curve by show-
ing that u̇ = 0.

(b) Show that the slopes of the characteristic curves are given by
dt/dx = 1/u, and use it to prove that the characteristic curves
are straight lines determined by the initial data.

(c) Suppose that x1 < x2 and u0(x1) > u0(x2) > 0. Show that
the two characteristics through the points (x1, 0) and (x2, 0)
intersect at a point P = (x̄, t̄) with t̄ > 0. Show that this together
with the result in part (a) implies that the solution cannot be
continuous at P (see Figure 8.5.4).

t

x
x
1

x
2

P

Figure 8.5.4. Characteristics of the equation ut + uux = 0.

(d) Calculate t̄.

13. Repeat Exercise 3 for the equation

ut + f(u)x = 0, (15)

10For additional details, consult A. J. Chorin and J. E. Marsden, A Mathematical
Introduction to Fluid Mechanics, 3rd ed., Springer-Verlag, New York, 1992, and P. D.
Lax, “The Formation and Decay of Shock Waves,” Am. Math. Monthly 79 (1972): 227-

241. We are grateful to Joel Smoller for suggesting this series of exercises.
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where f ′′ > 0 and f ′(u0(x2)) > 0. The characteristics are now defined
by ẋ = f ′(u), ṫ = 1. We call equation (15) and equation in divergence
form. (This exercise shows that a continuous solution is generally
impossible—irrespective of the smoothness of f !)

14. (Weak solutions) Since equations of the form in Exercise 4 arise in
many physical applications [gas dynamics, magnetohydrodynamics,
nonlinear optics (lasers)] and because it would be nice for a solution to
exist for all time (t), it is desirable to make sense out of the equation
by reinterpreting it when discontinuities develop. To this end, let
φ = φ(x, t) be a C1 function. Let D be a rectangle in the xt plane
determined by −a ≤ x ≤ a and 0 ≤ t ≤ T , such that φ(x, t) = 0 for
x = ±a, x = T , and for all (x, t) in the upper half plane outside D.
Let u be a “genuine” solution of equation (15).

(a) Show that∫∫
t≥0

[uφt + f(u)φx] dxdt+

∫
t=0

u0(x)φ(x, 0) dx = 0. (16)

(HINT: Start with
∫∫
D

[ut + f(u)x]φ dxdx = 0.)

Thus, if u is a smooth solution, then equation (16) holds for all
φ as above. We call the function u a weak solution of equation
(15) if equation (16) holds for all such φ.

(b) Show that if u is a weak solution that is C1 in an open set Ω in
the upper half of the xt plane, then u is a genuine solution of
equation (15) in Ω.

15. (The jump condition, which is also known in gas dynamics as the
Rankine-Hugoniot condition.) The definition of a weak solution
given in Exercise 5 clearly allows discontinuous solutions. However,
the reader shall now determine that not every type of discontinuity is
admissible, for there is a connection between the discontinuity curve
and the values of the solution on both sides of the discontinuity.

Let u be a (weak) solution of equation (15) and suppose Γ is a smooth
curve in the xt plane such that u “jumps” across a curve Γ; that is,
u is of a class C1 except for jump discontinuity across Γ. We call
that Γ a shock wave. Choose a point P ∈ Γ and construct, near P ,
a “rectangle” D = D1 ∪ D2, as shown in Figure 8.5.5. Choose φ to
vanish on D and outside D.

(a) Show that ∫∫
D

[uφt + f(u)φx] dxdt = 0
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R

t

x

P

Q

D1

D2

Γ

Figure 8.5.5. The solution u jumps in value from u1 to u2 across Γ.

and∫∫
D1

[uφt + f(u)φx] dxdt =

∫∫
D1

[(uφ)t + (f(u)φ)x] dxdt.

(b) Suppose that u jumps in value from u1 to u2 across Γ so that
when (x, t) approaches a point (x0, t0) on Γ from ∂Di, u(x, t)
approaches the value ui(x0, t0). Show that

0 =

∫
∂D1

φ[−u dx+ f(u) dt] +

∫
∂D2

φ[−u dx+ f(u) dt]

and deduce that

0 =

∫
Γ

φ([−u] dx+ [f(u)] dt)

where [α(u)] = α(u2)− α(u1) denotes the jump in the quantity
α(u) across Γ.

(c) If the curve Γ defines x implicitly as a function of t and ∂D
intersects Γ at Q = (x(t1), t1) and R = (x(t2), t2), show that

0 =

∫ R

Q

φ([−u] dx+ [f(u)] dt) =

∫ t2

t1

φ

(
[−u]

dx

dt
+ [f(u)]

)
dt.

(d) Show that at the point P on Γ,

[u] · s = [f(u)], (17)

where s = dx/dt at P . The number s is called the speed of the
discontinuity. Equation (17) is called the jump condition; it is
the relationship that any discontinuous solution will satisfy.
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16. (Loss of uniqueness) One drawback of accepting weak solutions is
loss of uniqueness. (In gas dynamics, some mathematical solutions
are extraneous and rejected on physical grounds. For example, dis-
continuous solutions of rarefaction shock waves are rejected because
they indicate that entropy decreases across the discontinuity.)

Consider the equation

ut +

(
u2

2

)
x

= 0, with initial data u(x, 0) =

{
−1, x ≥ 0

1, x < 0.

Show that for every α ≥ 1, uα is a weak solution, where uα is defined
by

uα(x, t) =



1, x ≤ 1− α
2

t

−α, 1− α
2

t ≤ x ≤ 0

α, 0 ≤ x ≤ α− 1

2
t

−1,
α− 1

2
t < x.

(It can be shown that if f ′′ > 0, uniqueness can be recovered by
imposing an additional constraint on the solutions. Thus, there is a
unique solution satisfying the “entropy” condition

u(x+ a, t)− u(x, t)

a
≤ E

t

for some E > 0 and all a 6= 0. Hence for fixed t, u(x, t) can only
“jump down” as x increases. In our example, this holds only for the
solution with α = 1.)

17. (The solution of equation (15) depends on the particular divergence
form used.) The equation ut + uux = 0 can be written in the two
divergence forms

ut + (
1

2
u2)x = 0. (i)

(
1

2
u2)t + (

1

3
u3)x = 0. (ii)

Show that a weak solution of equation (i) need not be a weak solution
of equation (ii). [HINT: The equations have different jump conditions:
In equation (i), s = 1

2 (u2 + u1), while in equation (ii), s = 2
3 (u2

2 +
u1u2 + u2

1)/(u2 + u1).]

18. ( Noninvariance of weak solutions under nonlinear transformation)
Consider equation (15) where f ′′ > 0.
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(a) Show that the transformation v = f ′(u) takes this equation into

vt + vvx = 0. (18)

(b) Show that the above transformation does not necessarily map
discontinuous solutions of equation (15) into discontinuous so-
lutions of equation (18). (HINT: Check the jump conditions;
for equation (18), s[v] = 1

2 [v2] implies s[f ′(u)] = 1
2 [f ′(u)2]; for

equation (15), s[u] = [f(u)].)

19. Requires a knowledge of complex numbers. Show that Poisson’s for-
mula in two dimensions may be written as

u(r′, θ′) =
1

2π

∫ 2π

0

u(reiθ)
r2 − |z′|2

|reiθ − z′|2
dθ,

where z′ = r′eiθ
′
.
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Selected Answers and Solutions for
Additional Content

§2.7 Some Technical Differentiation Theorems.

1. Df(x, y, z) =

 ex 0 0
0 − sin y 0
0 0 cos z

;

Df is a diagonal matrix if each component function fi depends only
on xi.

3. (a) Let A = B = C = R with f(x) = 0 and g(x) = 0 if x 6= 0 and
g(0) = 1. Then w = 0 and g(f(x))− 1 for all x.

(b) If ε > 0, let δ1 and δ2 be small enough that Dδ1(y0) ⊂ B and
‖g(y) −w‖ < ε whenever y ∈ B and 0 < ‖y − y0‖ < δ2. Since
g(y0) = w, the 0 < ‖y − y0‖ restriction may be dropped. Let δ
be small enough that ‖f(x)−y0‖ < min (δ1, δ2) whenever x ∈ A
and 0 < ‖x − x0‖ < δ. Then for such x, ‖f(x) − y0‖ < δ1, so
that f(x) ∈ B and g(f(x)) is defined. Also, ‖f(x) − y0‖ < δ2,
and so ‖g(f(x))−w‖ < ε.

5. Let x = (x1, . . . , xn) and fix an index k. Then

f(x) = akkx
2
k +

n∑
i=16=k

akjxkxj

+

n∑
j=16=k

akjxkxj + [terms not involving xk]
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and therefore

∂f

∂xk
= 2akkxk +

∑
i6=k

akixi +
∑
i 6=k

akixi = 2

n∑
j=1

akjxj = (2Ax)k.

Since the kth components agree for each k,∇f(x) = 2Axk.

7. The matrix T of partial derivatives is formed by placing Dg(x0) and
Dh(y0) next to each other in a matrix so that T(x0, y0)(x − x0, y −
y0) = Dg(x0)(x−x0)+Dh(y0)(y−y0). Now use the triangle inequality
and the fact that ‖(x−x0, y−y0)‖ is larger than |x−x0| and |y−y0|
to show that ‖f(x, y) − f(x0, y0) −T(x0, y0)(x − x0, y − y0)‖/‖(x −
x0, y − y0)‖ goes to 0.

9. Use the limit theorems and the fact that the function g(x) =
√
|x| is

continuous. (Prove the last statement.)

11. For continuity at (0, 0), use the fact that∣∣∣∣ xy

(x2 + y2)1/2

∣∣∣∣ ≤ |xy|
(x2)1/2

= |y|

or that |xy| ≤ (x2 + y2)/2.

13. 0, see Exercise 11.

15. Let x take the role of x0 and x + h that of x in the definition.

17. The vector a takes the place of x0 in the definition of a limit or in
Theorem 6. In either case, the limit depends only on values of f(x) for
x near x0, not for x = x0. Therefor f(x) = g(x) for x 6= a certainly
suffices to make the limits equal.

19. (a) limx→0(f1+f2)(x)/‖x‖ = limx→0 f1(x)/‖x‖+limx→0 f1(x)/‖x‖ =
0.

(b) Let ε > 0. Since f is o(x), there is a δ > 0 such that ‖f(x)/‖x‖‖ <
ε/c whenever 0 < ‖x‖ < δ. Then ‖(gf)(x)/‖x‖‖ ≤ ‖g(x)‖f(x)/‖x‖‖ <
ε, so limx→0(gf)(x)/‖x‖ = 0.

(c) limx→0 f(x)/|x| = limx→0 |x| = 0, so that f(x) is o(x). But
limx→0 g(x)/|x| does not exist, since g(x)/|x| = ±1 (as x is
positive or negative). Therefore g(x) is not o(x).
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Solutions to Selected Exercises in §2.7

1. Here, we have f(x, y, z) = (ex, cos y, sin z) = (f1, f2, f3), so

Df(x, y, z) =

 ∂f1/∂x ∂f1/∂y ∂f1/∂z
∂f2/∂x ∂f2/∂y ∂f2/∂z
∂f3/∂x ∂f3/∂y ∂f3/∂z


=

 ex 0 0
0 − sin y 0
0 0 cos z


Df is a diagonal matrix when f1 depends only on the first variable,
f2 depends only on the second, and so on. Thus, Df is diagonal if fn
is a function of the nth variable only.

4. A uniformly continuous function is not only continuous at all points
in the domain, but more importantly, for given ε > 0, we can find one
δ for all x0. This is different from continuity in that for continuity, we
may find a δ which will work for a particular x0. A continuous func-
tion does not always have to be uniformly continuous (for examples:
f(x) = 1/x2 on R or g(x) = 1/x on (0, 1].)

(a) T : Rn → Rm is linear implies that ‖Tx‖ ≤ M‖x‖. Given
ε > 0, x and y ∈ Rn, we have ‖T(x − y)‖ ≤ M‖x − y‖ from
exercise 2(a). Since T is linear, ‖T(x−y)‖ ≤ ‖T(x)−T(y)‖. Let
δ = ε/M ; then for 0 ≤ ‖x− y‖ ≤ δ, we have ‖T(x)−T(y)‖ ≤
Mδ = ε. Note that this proof works because δ and ε do not
depend on a particular choice of a point in Rn.

(b) Given ε > 0, we want a δ > 0 such that 0 < |x−x0| < δ implies
|1/x2 − 1/x0

2| < ε for x and x0 in (0, 1]. We calculate:∣∣∣∣ 1

x2
− 1

x0
2

∣∣∣∣ =

∣∣x0
2 − x2

∣∣
x2x0

2
=
|x− x0||x+ x0|

x2x0
2

= |x− x0| ·
∣∣∣∣ 1

xx0
2

+
1

x0x2

∣∣∣∣ < |x− x0|
2

x0
3
< ε

(if x0 is the smaller of x and x0), i.e.,∣∣∣∣ 1

x2
− 1

x0
2

∣∣∣∣ ≤ |x− x0|
2

{min(x, x0)}3
.

Note that min(x, x0) > 0. Let δ < (ε/2) {min(x, x0)}3, then
|x− x0| < δ implies∣∣∣∣ 1

x2
− 1

x0
2

∣∣∣∣ < δ · 2

x0
3
<
ε

2
x0

3 · 2

x0
3

= ε.
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We have only shown that f(x) = 1/x2 is continuous. It is not
uniformly continuous since∣∣∣∣ 1

x2
− 1

x0
2

∣∣∣∣ =

∣∣x0
2 − x2

∣∣
x2x0

2
=
|x− x0||x+ x0|

x2x0
2

,

so for fixed ε, any δ approaches ∞ as x0 goes to 0.

7. We have f(x, y) = g(x) + h(y). What we want to prove is that as
matrices,

Df(x, y) = (Dg(x),Dh(y)).

Since g and h are differentiable at x0 and y0, respectively, we have

lim
x→x0

|g(x)− g(x0)−Dg(x− x0)|
|x− x0|

= 0

and

lim
y→y0

|h(y)− h(y0)−Dh(y − y0)|
|y − y0|

= 0

Now, use the triangle inequality:

|g(x)− g(x0) + h(y)− h(y0)− (Dg(x− x0) + Dh(y − y0))|
≤ |g(x)− g(x0)−Dg(x− x0)|+ |h(y)− h(y0)−Dh(y − y0)|.

Since ‖(x, y)− (x0, y0)‖ ≥ ‖x−x0‖ and ‖(x, y)− (x0, y0)‖ ≥ ‖y−y0‖,
the sum of the two limits is greater than

lim
(x,y)→(x0,y0)

|g(x) + h(y)− (g(x0) + h(y0))− (Dg(x− x0) + Dh(y − y0))|
‖(x, y)− (x0, y0)‖

.

Hence this limit goes to 0, and this satisfies the definition for differ-
entiability of f at (x0, y0).

11. Given ε, note that∣∣∣∣∣ xy

(x2 + y2)
1/2
− 0

∣∣∣∣∣ ≤ ∣∣∣xyx ∣∣∣ = |y|,

and we also know that |y| ≤
√
x2 + y2. Let δ = ε; then ‖(x, y) −

(0, 0)‖ =
√
x2 + y2 < δ implies that∣∣∣∣∣ xy

(x2 + y2)
1/2
− 0

∣∣∣∣∣ < |y| < ε.

Therefore, lim(x,y)→(0,0) f(x, y) = 0 and f is continuous.
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16. (a) Suppose y is a boundary point of the open set A ⊂ Rn. Then
every ball centered at y contains points in A and points not in
A. Therefore, the intersection of A and the ball Dε(y) is not
empty. Hence

(i) y is not in A since points of A have neighborhoods contained
in A, and

(ii) y is the limit of the sequence from A; choose ε = 1/n,
n = 1, 2, 3, . . . , then D(1/n)(y) ∩A 6= ∅ for n = 1, 2, 3, . . . .

Pick xn to be an element of D(1/n)(y)∩A. Then xn is in A and
‖y−xn‖ ≤ 1/n, which goes to zero as n goes to infinity. Suppose
y is not in A, but there is a sequence {xn} in A converging to
y. Let ε > 0. The y is in the intersection of Dε(y) and the set
of all points not in A, so the right-hand side is not empty. On
the other hand, there exists an N such that n ≥ N implies that
‖xn−y‖ < ε, i.e., n ≥ N implies that xn is in Dε(y). xN is in A,
so xN is in Dε(y)∩A. Hence, the right-hand side is a boundary
point of A.

(b) Suppose limx→y f(x) = b, i.e., for every ε > 0, there is a δ > 0
such that for x in A, ‖x−y‖ < δ implies that ‖f(x)−f(y)‖ < ε.
Let {xn} be a sequence in A converging to y. Fix ε > 0. Choose
δ > 0 as above. Choose N so that n ≥ N implies that ‖xn −
y‖ < δ. Then n ≥ N implies ‖f(xn) − b‖ < ε, so the sequence
|f(xn)| converges to b. (We need y to be on the boundary of A
to guarantee the existence of the sequence {xn}.)

To go the other way, suppose it is not the case that limx→y f(x) =
b. Then there exist ε > 0 such that for every δ > 0, there exists
an x in A with ‖x−y‖ < δ, but ‖f(x)− b‖ > ε. Choose xn in A
such that ‖xn−y‖ < 1/n, but ‖f(xn)−b‖ > ε for n = 1, 2, 3, . . .
(corresponding to δ = 1/n). Then xn converges to y (as in part
(a)), but f(x) does not converge to b. (Note: We have proved
the “contrapositive” of the theorem. We negate the statement of
the hypothesis (note the changes in “there exists,” “for every,”
and the inequality signs), and prove the negation of the result
we want to arrive at. The difference between this method and
the method of proving by contradiction is that we do not negate
the hypothesis.)

(c) Let U be open in Rm with x in U . The proof follows from part
(b). Specifically,

lim
xn→x

f(xn) = f(x) implies f(xn)→ f(x)

for any sequence xn converging to x in U . By part (b), f is
continuous at x.
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§3.4A: Second Derivative Test: Constrained Extrema

1. It is the usual second derivative test in one-variable calculus.

§4.1A: Equilibria in Mechanics

1. (− 1
4 ,−

1
4 )

3. (2, 1) is an unstable equilibrium.

5. Stable equilibrium point (2 +m2g2)−1/2(−1,−1,−mg)

Solution to Exercise 3. By Theorem 14, the critical points of the
potential V are the equilibrium points. These points are where the gradient
vanishes. In fact,

∇V (x, y) = (2x+ 4y − 8)i + (4x− 2y − 6)j = 0

only if 2x+ 4y− 8 = 0 and 4x− 2y− 6 = 0. Simplifying we get the system
of equations

x+ 2y = 4

2x− y = 3

whose solution is x = 2, y = 1. This critical point (2, 1) will be stable if it is
a strict local minimum for V . Using the second test (Theorem 6), we have

∂2V

∂x2
(2, 1) = 2,

∂2V

∂y2
(2, 1) = −2,

∂2V

∂x∂y
(2, 1) = 4.

Therefore the discriminant

D =

(
∂2V

∂x2

)(
∂2V

∂y2

)
−
(
∂2V

∂x∂y

)2

= −20 < 0.

The second derivative test thus tells us that the point is a saddle; in par-
ticular, we cannot conclude that the point is stable. (In fact, it is unstable,
but this has not been discussed carefully, so it is best to just say the sta-
bility test fails). �

§4.1B Rotations and the Sunshine Formula

1. (a) m0 = (1/
√

6)(i + j + 2k),
n0 = (1/2

√
3)(i + j− k)

(b) r = [cos(πt/12)/2
√

2+sin(πt/12)/4]i+[−1/2
√

2+cos(πt/12)/2
√

2+
sin(πt/12)/4]j + [−1/2

√
2 + cos(πt/12)/

√
2− sin(πt/12)/4]k
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(c) (x, y, z) = (−1/2
√

2)(i + 2j + 3k) + (−π/48)(i + j + k)(t− 12)

3. Td would be longer.

5. The “exact” formula is− tan l sinα = cos(2πt/Td)[tan(2πt/Ty) tan(2πt/Td)−
cosα].

7. A = 9.4◦

9. The equator would receive approximately six times as much solar
energy as Paris.

§4.4 Flows and the Geometry of the Divergence

1. If x = (x1, x2, x3), φ(x, t) = (φ1, φ2, φ3), and f = f(x1, x2, x3, t), then
by the chain rule,

d

dt
(f(φ(x, t), t)) =

∂f

∂t
(x, t) +

3∑
i=1

∂f

∂xi
(φ(x, t), t)

∂φi
∂t

(x, t)

=
∂f

∂t
(x, t) + [∇f(φ(x, t), t)] · [F(φ(x, t))].

3. By the product rule,

d

dt
v ·w =

dv

dt
·w + v · dw

dt
.

Substitute equation (2) into this. For the last equality, use the identity
ATv ·w = v ·Aw.

5. By the choice of axes,

w =
1

2
(∇× F)(0) = ωk.

From the text,

v = −ωyi + ωxj

and therefore

Dv(0) =

b0 −ω 0
ω 0 0
0 0 0

 .
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On the other hand, by the definitions of W and ∇× F,

W =

bw11 w12 w13
w21 w22 w23
w31 w32 w33



=


0

1

2

(
∂F1

∂y
− ∂F2

∂x

)
1

2

(
∂F1

∂z
− ∂F3

∂x

)
1

2

(
∂F2

∂x
− ∂F1

∂y

)
0

1

2

(
∂F2

∂z
− ∂F3

∂y

)
1

2

(
∂F3

∂x
− ∂F1

∂y

)
1

2

(
∂F3

∂y
− ∂F2

∂z

)
0


=

1

2

 0 −(∇× F)z (∇× F)y
(∇× F)z 0 −(∇× F)x
−(∇× F)y (∇× F)x 0


Our choice of coordinate axes gives

W =

0 −ω 0
ω 0 0
0 0 0

 .
To interpret the result, we note that the vector field v represents
rotation around a fixed axis w. The flow ψ(x, t) of v rotates points
in this field, and, for fixed t, its derivative Dxψ(x, t) rotates vectors
as well. Let Y be an arbitrary vector and set Y(t) = Dxψ(x, t)Y. As
t increases or decreases, Y(t) rotates around w and

dY

dt

∣∣∣∣
t=0

= Dxv(0)Y.

This gives the rate of change of Y as it is transported (rotated) by
Dxψ. By Exercise 3, the rate of change of any vector x at the origin
under transport by the derivative of the flow φ(x, t) of F is given by

dx

dt

∣∣∣∣
t=0

= DxF(0)x = (S +W )x.

Thus this rate of change of x has two components: the deformation
matrix, which affects inner products, and the W matrix. Thus the W
matrix is precisely the rate of change of vectors as they undergo an
infinitesimal rotation around the axis (curl F)(0) = (∇ × F)(0) by
the mapping Dxψ(x, t).

[The deformation matrix S incorporates all the length and angle
changes caused by the flow. In particular, volume changes are con-
tained in S. In fact, the trace of S is the divergence; tr S = div F(x).
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(The trace of a matrix is the sum of its diagonal entries). The trace-
free part of S,

S′ = S − 1

3
(trSI)

where I is the 3× 3 identity, is called the shear.]

7. The line x + λv is carried to the curve λ 7→ φ(x + λv, t) after time
t, which for λ small, is approximated by its tangent line, namely,
λ 7→ φ(x, t) + Dxφ(x, t) · λv.

§5.6 Some Technical Integration Theorems

1. If a 6= b, let ε = |a− b|/2.

3. Let e = 2d−c, so that d = (c+e)/2. Consider the vertical “doubling”
of R defined by Q = R∪R1, where R1 = [a, b]× [d, e]. If f is extended
to Q by letting f be 0 on the added part, then f is integrable over Q
by additivity. The nth regular partition of [(a+ b)/2, b]× [c, d] is part
of the 2nth regular partition of Q. For large n, the Riemann sums
for that 2nth partition cannot vary by more than ε as we change the
points from the subrectangles, in particular if we change only those in
[(a+b)/2, b]× [c, d]. These changes correspond to the possible changes
for the Riemann sums for the nth partition of [(a + b)/2, b] × [c, d].
The argument for part (b) is similar.

5. Let R = [a, b] × [c, d] and B = [e, f ] × [g, h]. Since the rectangles of
a partition of R intersect only along their edges, their areas can be
added, and bn is the area of the union of all subrectangles of the nth
regular partition of R that intersect B. Since B is contained in this
union, area (B) ≤ bn. On the other hand, if (x, y) is in the union,
then

e− (b− a)/n ≤ x ≤ f + (b− a)/n

and
g − (d− c)/n ≤ y ≤ h+ (d− c)/n.

This leads to

bn ≤ area(B)+2[(b−a)(h−g)+(d−c)(f−e)]/n+4(a−b)(d−c)/n2.

Letting n→∞ and combining the inequalities proves the assertion.

7. (a) The strategy is to go from point to point within [a, b] by short
steps, adding up the changes as you go. Given ε > 0, φ is uni-
formly continuous and therefore there exists a δ > 0 such that
|φ(x) − φ(y)| ≤ ε whenever |x − y| < δ. Let x ∈ [a, b] and in-
troduce intermediate points a = x0 < x1 < . . . < xn−1 < xn =
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x with xi+1 − xi < δ. This can be done with no more than
[(b− a)/δ] + 1 segments. By the triangle inequality,

|φ(x)− φ(a)| ≤
n∑
i=1

|φ(xi)− φ(xi−1)| ≤
(
b− a
δ + 1

)
ε.

Thus |φ(x)| ≤ |φ(a)|+ [(b− a)/(δ + 1)]ε for every x in [a, b].

(b) Use an argument like that for part (a), moving by short steps
within the rectangle [a, b]× [c, d].

(c) This is trickier, since D may be composed of many disconnected
pieces so that the short steps cannot be taken within D. Never-
theless, given ε, there is a δ such that|f(x)−f(y)| ≤ ε whenever
x and y are in D and ‖x−y‖ < δ, by the uniform boundedness
principle. Since D is bounded, we may find a large “cube” R with
sides of length L such that D ⊂ R. Partition R into subcubes by
dividing each edge into m parts. The diagonal of each subcube
has length

√
nL/m. If we takem >

√
nL/δ, any two points in the

same subcube are less then δ apart, and there are mn subcubes.
If R1, . . . , Rn are those that intersect D, choose xi ∈ D ∩ Ri.
For any x ∈ D, we have |f(x) < ε+ map(|f(x1)|, . . . , |f(x)|).

Solution to Exercise 2(a).

Exercise 2(a). Let f be the function on the half open interval (0, 1]
defined by f(x) = 1/x. Show that f is continuous at every point of (0, 1]
but not uniformly continuous.

Solution. Let x0 ∈ (0, 1]. Given ε > 0, we must find a δ > 0 such that
whenever

0 < |x− x0| < δ, xε(0, 1], then

∣∣∣∣ 1x − 1

x0

∣∣∣∣ < ε.

Notice that ∣∣∣∣ 1x − 1

x0

∣∣∣∣ =
|x− x0|
|xx0|

.

If |x− x0| < x0/2, then x > x0/2 > 0 and

|x− x0|
|xx0|

<
2|x− x0|

x2
0

.

If |x− x0| is also less than ε · x2
0/2, then 2|x− x0|/x2

0 < ε. Thus by picking
δ < min

(
x0/2, (ε/2) · x2

0

)
one has∣∣∣∣ 1x − 1

x0

∣∣∣∣ < ε.
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Thus, f is continuous at x0. To show that f is not uniformly continuous, we
suppose it were and derive a contradiction. Let ε = 1/2. If f were uniformly
continuous there exists a δ > 0 such that∣∣∣∣ 1

x1
− 1

x2

∣∣∣∣ < 1

2

whenever |x2 − x1| < δ. Let N > 2δ. There for all integers n,m > N∣∣∣∣ 1n − 1

m

∣∣∣∣ < 1

N
+

1

N
=

2

N
< δ.

Set x1 = 1/n and x2 = 1/(n+ 1). Then∣∣∣∣ 1

x1
− 1

x2

∣∣∣∣ =
1
1

n+1

− 1
1
n

= 1.

But 1 is not less than 1/2 a contradiction. �

§8.5 Green’s Functions

1. Write the components of ϕ as ξ(x, t), η(x, t), and ζ(x, t). First, ob-
serve that by definition of ϕ,

∂

∂t
ϕ(x, t) = F(ϕ(x, t), t).

The determinant J can be differentiated by recalling that the
determinant of a matrix is multilinear in the columns (or rows). Thus,
holding x fixed,

∂

∂t
J =


∂

∂t

∂ξ

∂x

∂η

∂x

∂ζ

∂x

∂

∂t

∂ξ

∂y

∂η

∂y

∂ζ

∂y

∂

∂t

∂ξ

∂z

∂η

∂z

∂ζ

∂z

+


∂ξ

∂x

∂

∂t

∂η

∂x

∂ζ

∂x

∂ξ

∂y

∂

∂t

∂η

∂y

∂ζ

∂y

∂ξ

∂z

∂

∂t

∂η

∂z

∂ζ

∂z

+


∂ξ

∂x

∂η

∂x

∂

∂t

∂ζ

∂x

∂ξ

∂y

∂η

∂y

∂

∂t

∂ζ

∂y

∂ξ

∂z

∂η

∂z

∂

∂t

∂ζ

∂z

 .

Now write

∂

∂t

∂ξ

∂x
=

∂

∂x

∂ξ

∂t
=

∂

∂x
F1(ϕ(x, t), t),

∂

∂t

∂ξ

∂y
=

∂

∂y

∂ξ

∂t
=

∂

∂y
F2(ϕ(x, t), t),

∂

∂t

∂ζ

∂z
=

∂

∂z

∂ζ

∂t
=

∂

∂z
F3(ϕ(x, t), t).
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The components F1, F2, and F3 of F in this expression are functions
of x, y, and z through ϕ(x, t); therefore,

∂

∂x
F1(ϕ(x, t), t) =

∂F1

∂ξ

∂ξ

∂x
+
∂F1

∂η

∂η

∂x
+
∂F1

∂ζ

∂ζ

∂x
,

...
∂

∂z
F3(ϕ(x, t), t) =

∂F3

∂ξ

∂ξ

∂z
+
∂F3

∂η

∂η

∂z
+
∂F3

∂ζ

∂ζ

∂z
.

When these are substituted into the previous expression for ∂J/∂t,
one gets for the respective terms

∂F1

∂x
J +

∂F2

∂y
J +

∂F3

∂z
J = (div F)J.

3. Hints: By the transport equation from Theorem 12, with V in place
of F,

d

dt

∫∫∫
Wt

ρ dx dy dz =

∫∫∫
Wt

(
Dρ

Dt
+ ρdiv V

)
dx dy dz.

Now use the fact that

Dρ

Dt
+ ρdiv V = div J +

∂ρ

∂t
,

where J = ρV, as in the text.

5. If vi is the ith component of a vector v, then by the transport equation
(Exercise 2),[
d

dt

∫∫∫
Wt

fF dx dy dz

]
i

=
d

dt

∫∫∫
Wt

(fF)i dx dy dz =
d

dt

∫∫∫
Wt

fFi dx dy dz

=

∫∫∫
Wt

[D(fFi)

Dt
+ (fFi) div F

]
dx dy dz

=

∫∫∫
Wt

[ ∂
∂t

(fFi) + Dx(fFi) ·F + (fFi) div F
]
dx dy dz

=

∫∫∫
Wt

[ ∂
∂t

(fFi) +∇(fFi) ·F + (fFi) div F
]
dx dy dz

=

∫∫∫
Wt

{ ∂
∂t

(fFi) + [D(fF)F]i + [(fF) div F]i

}
dx dy dz

=

∫∫∫
Wt

[ ∂
∂t

(fF) + D(fF)F + (fF) div F
]
i
dx dy dz

=
[ ∫∫∫

Wt

∂

∂t
(fF) + D(fF)F + (fF) div F dx dy dz

]
i

=
[ ∫∫∫

Wt

(
∂

∂t
(fF) + (F · ∇)(fF) + (fF) div F

)
dx dy dz

]
i
.
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7. (a) Because V = ∇φ,∇×V = 0, and therefore (V · ∇)V =
1

2
∇(‖V‖2),

Euler’s equation becomes

−∇p
ρ

=
dV

dt
+

1

2
∇(‖V‖2) = ∇

(dφ
dt

+
1

2
‖V‖2

)
.

If c is a path from P1 to P2, then

−
∫
c

1

ρ
dp = −

∫
1

ρ
∇p · c′(t) dt =

∫
c

∇
(dφ
dt

+
1

2
‖V‖2

)
· c′(t) dt

=
(dφ
dt

+
1

2
‖V‖2

)∣∣∣P2

P1

.

(b) If dV/dt = 0 and ρ is constant, then 1
2∇(‖V‖2) = −(∇p)/ρ =

−∇(p/ρ), and therefore ∇
(

1

2
‖V‖2 + p/ρ

)
= 0.

9. By Ampère’s law,∇ ·J = ∇ · (∇×H)−∇ · (∂E/∂t) = −∇ · (∂E/∂t) =
−(∂/∂t)(∇ ·E). By Gauss’ law this is −∂ρ/∂t. Thus, ∇ ·J+∂ρ/∂t =
0.

10. (a) If x ∈ S, then r′′a/R = r, so G = 0. In general, r = ‖x−y‖ and
r′′ = ‖x− y‖, and therefore

G =
1

4π

(
R

a

1

‖x− y′′‖
− 1

‖x− y‖

)
and

∇xG =
1

4π

(
R

a

y′ − x

‖x− y′‖3
− y − x

‖x− y‖3

)
and ∇2

xG = 0 when x 6= y, just as in the analysis of equation
(15)(x 6= y′, since x is inside and y′ is outside the sphere).
Theorem 10 gives ∇2G = δ(x − y) − (R/a)δ(x − y′), but the
second term is always 0, since x is never y′. Therefore ∇2G =
δ(x− y) for x and y in the sphere.

(b) If x is on the surface of S, then n = x/R is the outward unit
normal, and

∂G

∂n
=

1

4π

[
R

a
∇
(

1

r′′

)
· n−∇

(
1

r

)
· n
]

=
1

4π

(
R

a

y′ − x

‖y′ − x‖3
− y − x

‖x− y‖3

)
· n.

If γ is the angle between x and y, then ‖x−y‖2 = r2 = R2+a2−
2aR cos γ and ‖x−y′‖2 = r

′′2 = R2+b2−2bR cos γ = (R2/a2)r2.
Then

∂G

∂n
=

1

4πr3

[
R

a

y′ − x

(R/a)3
− (y − x)

]
· n.
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But x · n = R and n = x/R, and so this becomes

∂G

∂n
=

1

4π3

(
a2

R3
y′ · x− a2

R
− y · x

R
+R

)
=

1

4π3R

(
a2

R2
‖y′‖R cos γ − ‖y‖R cos γ +R2 − a2

)
=
R2 − a2

4πR

1

r3
since ‖y′‖ = R2/a.

Integrating over the surface of the sphere,

u(y) =

∫∫
S

f
∂G

∂n
dS

=

∫ 2π

0

∫ π

0

[
f(θ, φ)

R2 − a2

4πR

1

r3
R2 sinφ

]
dφdθ

=
R(R2 − a2)

4π

∫ 2π

0

∫ π

0

f(θ, φ) sinφ dφdθ

(R2 + a2 − 2aR cos γ)3/2
.

11. (a) According to equations (12) of this section, we need to show that

G̃(x,y) = G̃(y,x) (1)

and
∇2G = δ(x,y). (2)

Define r = x− y and r′ = R(x)− y. To show (1),

G̃(y,x) = G(y,x)−G(y, R(x)) = −1

4
π‖y−x‖+

1

4
π‖y−R(x)‖.

It is obvious that ‖r‖ = ‖−r‖, so G̃(y,x) = G̃(x,y). To show (2),

we know ∇G(x,y) = r/4πr3. Thus ∇G(R(x),y) = r′/4π(r′)
3
.

Then ∇2G̃ = δ(x,y)− δ(R(x),y), and∫∫∫
R3

∇2G̃ dy =

∫∫∫
R3

[δ(x,y)− δ(R(x),y)] dy.

If x = y, then R(x) 6= y, and the above integral becomes∫∫∫
R3

∇2G̃ dy =

∫∫∫
R3

δ(x,y) dy = 1;

If R(x) = y, then x 6= y. Make a change of variable: Let u = x,
v = y, w = −z, so dy = dx dy dz = −du dv dw. Now the integral
becomes ∫∫∫

R3

∇2G̃ dy = −
∫∫∫

R3

δ(R(x),y) dy

= −
∫∫∫

R3

δ(R(x),u) (−du)

=

∫∫∫
R3

δ(R(x),u) du = 1,
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where u = (u, v, w).

(b) Simply ”stick” our Green’s function into an integral:

u(x) =

∫∫∫
R3

G̃(x,y)ρ(y) dy

=

∫∫∫
R3

G(x,y)ρ(y)−G(R(x),y)ρ(y) dy.

12. (a) Use the Chain rule: ut + uxx = utṫ+ uxẋ = u̇ = 0.

(b) Use dt/ds = 1 and dx/ds = u. The slope is equal to

t(s)

x(s)
=
dt

dx
=

1

u
.

From part (a), u is a constant, therefore 1/u is also a constant.
Hence the characteristic curves are straight lines.

(c) Two characteristics through (x1, 0) and (x2, 0) have equations

t = [1/u0(x1)](x− x1) and t = [1/u0(x2)](x− x2),

respectively. The intersection is

[1/u0(x1)](x− x1) = [1/u0(x2)](x− x2).

Simplify and get

x(1/u0(x1)− 1/u0(x2)) = x1/u0(x1)− x2/u0(x2).

Solve for x:

x =

x1

u0(x1) −
x2

u0(x2)

1
u0(x1) −

1
u0(x2)

=
x1u0(x2)− x2u0(x1)

u0(x2)− u0(x1)
> 0.

(d) Plug in:

t̄ =
1

u0(x1)

(
x1u0(x2)− x2u0(x1)

u0(x2)− u0(x1)
− x1

)
= − x2 + x1

u0(x2)− u0(x1)

13. (a) u̇ = (d/ds)[u(x(s), t(s))] = uxẋ+ utṫ = uxf
′(u) + ut = 0.

(b) If the characteristic curve u(x, t) = c (by part (a)), define t
implicitly as a function of x; then ux + ut(dt/dx) = 0. But also
ut + f(u)x = 0; that is, ut + f ′(u)ux = 0. These two equations
together give dt/dx = 1/f ′(u) = 1/f ′(c). Therefor the curve is
a straight line with slope 1/f ′(c).
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(c) If x1 < x2, u0(x1) > u0(x2) > 0, and f ′(u0(x2)), then f ′(u0(x1)) >
f ′(u0(x2)) > 0, since f ′′ > 0. The characteristic through (x1, 0)
has slope 1/f ′(u0(x1)), which is less than 1/f ′(u0(x2)), (that of
the characteristic through (x2, 0). So these lines must cross at a
point P = (x̄, t̄) with t̄ > 0 and x̄ > x2. The solution must be
discontinuous at P , since these two crossing lines would give it
different values there.

(d) t̄ = (x2 − x1)/[f ′(u0(x1))− f ′(u0(x2))].

15. (a) Since the “rectangle” D does not touch the x axis and φ = 0 on
∂D and outside D, equation (25) becomes∫∫

[uφt + f(u)φx] dxdt = 0. (i)

Since (uφ)t+ [f(u)φ]x = [ut+f(u)x]φ+ [uφt+f(u)φx], we have∫∫
Di

[uφt + f(u)φx] dxdt =

∫∫
Di

[(uφ)t + (f(u)φ)x] dxdt

−
∫∫

Di

[ut + f(u)x]φ dxdt.

But u is C1 on the interior of Di, and so Exercise 4(b) says
ut + f(u)x = 0 there. Thus∫∫

Di

[uφt+f(u)φx] dxdt =

∫∫
Di

+[(uφ)t+(f(u)φ)x] dxdt. (ii)

(b) By Green’s theorem,∫∫
Di

[(f(u)φ)x − (−uφ)t] dxdt =

∫
∂Di[(−uφ) dx+ f(u)φ dt],

and so expression (ii) becomes∫∫
[uφt + f(u)φx] dxdt =

∫
∂Di

φ[−u dx+ f(u) dt]

Adding the above for i = 1, 2 and using expression (i) gives

0 =

∫
∂Di

φ[−u dx+ f(u) dt] +

∫
∂D2

φ[−u dx+ f(u) dt]

The union of these two boundaries traverses ∂D once and that
portion of Γ within D in each direction, once with the values u1

and once with the values u2. Since φ = 0 outside of D and on
∂D2 this becomes 0 =

∫
Γ
φ{[−u] dx+ [f(u)] dt}.
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(c) Since φ = 0 outside D, the first integral is the same as that of the
second conclusion of part (b). The second integral results from
parameterizing the portion of Γ by α(t) = (x(t), t), t1 ≤ t ≤ t2.

(d) If [−u]s + [f(u)] = c > 0 at P , then we can choose a small
disk Bε centered at P contained in D (described above) such
that [−u](dx/dt) + [f(u)] > c/2 on the part of Γ inside Bε. Now
take a slightly smaller disk Bγ ⊂ Bε centered at P and pick φ
suck that φ ≡ 1 on Bγ . 0 ≤ φ ≤ 1 on the annulus Bε Bγ and
φ ≡ 0 outside Bε. If α(t0) = P , then there are t3 and t4 with
t1 < t3 < t0 < t4 < t2 and α(t) ∈ Bγfort3 < t < t4. But then∫ t2

t1

φ

(
[−u]

dx

dt
+ [f(u)]

)
dt >

c

2
(t4 − t3) > 0,

contradicting the result of part (c). A similar argument (revers-
ing signs) works if c < 0.

17. Setting P = g(u)φ and Q = −f(u)φ, applying Green’s theorem on
rectangular R, and using the function φ as in Exercise 4 shows that
if u is a solution of g(u)t + f(u)x = 0, then∫∫

t≥0

[g(u)φt + f(u)φx] dxdt+

∫
t = 0g(u0(x))φ(x, 0) dx = 0.

This is the appropriate analogy to equation (25), defining weak solu-
tions of g(u)t + f(u)x = 0. Thus we want u such that∫∫

t≥0

(
uφt +

1

2
u2φx

)
dxdt+

∫
t=0

u0(x)φ(x, 0)dx = 0 (i: weak)

holds for all admissible φ but such that∫∫
t≥0

(
1

2
u2φt +

1

3
u3φx

)
dxdt+

∫
t=0

1

2
u2

0(x)φ(x, 0) dx = 0

(ii: weak)
fails for some admissible φ. The method of Exercise 11 produces the
jump condition s[g(u)] = [f(u)]. For (a), this is s(u2 − u1) = (1

2u
2
2 −

1
2u

2
1) or

s =
1

2
(u2 + u1). (i: jump)

For (b), it is s( 1
2u

2
2 − 1

2u
2
1) = (1

3u
3
2 − 1

3u
3
1) or

s =
2

3

u2
2 + u1u2 + u2

1

u2 + u1
. (ii: jump)

If we take for u0(x) a (Heaviside) function defined by u0(x) = 0
for x < 0 and u0(x) = 1 for x > 0, we are led to consider the
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function u(x, t) = 0 when t > 2x and u(x, t) = 1 when t ≤ 2x. Thus
u1 = 1, u2 = 0, and the discontinuity curve Γ is given by t = 2x. Thus
the jump condition (i: jump)(i.e., dx/dt = 1

2 (u1 + u2) is satisfied.

For any particular φ, there are numbers T and a such that φ(x, t) = 0
for x ≥ a and t ≤ T . Letting Ω be the region 0 ≤ x ≤ a and 0 ≤ t ≤ T ,
condition (i: weak) becomes

0 =

∫∫
Ω

(
φt +

1

2
φx

)
dxdt+

∫ a

0

φ(x, 0) dx

=

∫
∂Ω

(
−φ dx+

φ

2
dt

)
+

∫ a

0

φ(x, 0) dx

=−
∫ a

0

φ(x, 0) dx+

∫ T/2

0

[
−φ(x, 2x)(−dx) +

1

2
φ(x, 2x)(−2dx)

]
+

∫ a

0

φ(x, 0) dx

Thus (i: weak) is satisfied for every φ, and u is a weak solution of
equation (i). However, (ii: weak) cannot be satisfied for every φ, since
the jump condition (ii: jump) fails. Indeed, if we multiply (ii: weak)
by 2 and insert u, (ii: weak) becomes

0 =

∫∫
Ω

(
φt +

2

3
φx

)
dxdt+

∫ a

0

φ(x, 0) dx.

The factor 1
2 has changed to 2

3 , and the computation above now
becomes

0 = −1

3

∫ π/2

0

φ(x, 2x) dx,

which is certainly not satisfied for every admissible φ.

19. For example, write |reiθ−z′|2 = |reiθ−r′eiθ′ |2 = |rei(θ−θ′)−r′|2, use
eiφ = cosφ+ i sinφ, |z|2 = zz̄, and multiply out.

The End
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