
Math 254H Weekly Homework 8 Due Apr 4, 2017

This homework is a tutorial on limits and error analysis.

Delta-epsilon notation. We say limx→a f(x) = L, or alternatively f(x)→ L as
x→ a, when any required output error tolerance ε > 0 can be guaranteed by some
input error tolerance δ > 0: that is, |x− a| < δ guarantees |f(x)− L| < ε.

We say f : R→ R is continuous at x = a when limx→a f(x) = f(a).

Example: Prove that f(x) = 2x+1 is continuous at x = a.
proof: We must show limx→a f(x) = f(a). Given a required output tolerance
ε > 0 (for example ε = 0.01), we set the input tolerance at δ = 1

2
ε (which would

be δ = 0.005 in our example). If x meets the input tolerance |x−a| < δ = 1
2
ε, then

the output error is |f(x) − f(a)| = |2x+1−(2a+1)| = 2|x−a| < ε, satisfying the
output tolerance.

Prob 1. Prove that a limit is a well-defined quantity if it exists: that is, if
limx→a f(x) = L1, and limx→a f(x) = L2, then L1 = L2.
note: The point here is that the complicated definition limx→a f(x) = L could
conceivably apply to two different numbers, both approached by f(x). Show that
|L1 − L2| < ε for every ε > 0, which means L1 − L2 = 0.

Prob 2. Prove that if lim
x→a

f(x) = L and lim
x→a

g(x) = M , then lim
x→a

f(x)g(x) = LM .

hint: Relate the product error to the individual errors by writing f(x)g(x)−LM =
f(x)g(x)− Lg(x) + Lg(x)− LM .

Similarly, we get that limits are compatible with addition, subtraction, multi-
plication, and division.

Example: If g(x) is continuous at x = a, and f(y) is continuous at y = g(a) then
f(g(x)) is continuous at x = a.
Proof: We must show limx→a f(g(x)) = f(g(a)). The continuity of f(y) means
that, given ε > 0, there is some input tolerance δ1 > 0 such that |y−g(a)| < δ1
guarantees |f(y) − f(g(a))| < ε. Now, by the continuity of g(x), there is also a
δ2 > 0 such that |x−a| < δ2 guarantees |g(x)−g(a)| < δ1, which in turn guarantees
|f(g(x))− f(g(a))| < ε. This shows the desired limit.



Little-o notation. For a function g(h), we define the order class o(g(h)) of
functions ε(h) which become tiny relative to g(h) as h goes to zero:

o(g(h)) = {ε(h) with lim
h→0

ε(h)
g(h)

= 0, and ε(0) = 0}.

We use this to indicate the magnitude of error in an approximation f(h) ≈ k(h):

f(h) ∈ k(h) + o(g(h)) means f(h) = k(h) + ε(h) for ε(h) ∈ o(g(h)).

Abusing notation, we write this as f(x) = L+ o(g(h)), using “=” to mean “∈”.

Example: limx→a f(x) = L whenever f(a+h) = L + o(1), meaning we have error
ε(h)
1

= ε(h) = f(a+h)−L→ 0 as h→ 0.

Example. Geometric series. We have 1
1−h = 1 + h + h2 + o(h2), since the error is

ε(h) = 1
1−h − (1+h+h2) = 1−1+h3

1−h , so ε(h)
h2 = h

1−h → 0 as h→ 0.

Example. Prove that o(h) + o(h) = o(h), meaning if ε1(h), ε2(h) ∈ o(h), then
ε1(h) + ε2(h) ∈ o(h).

Proof: We have lim
h→0

ε1(h)+ε2(h)
h

= lim
h→0

ε1(h)
h

+ lim
h→0

ε2(h)
h

= 0 + 0 = 0.

Similarly, if C 6=0, we have C o(g(h)) = o(g(h)); and if g1(h) ≤ g2(h), we have:
o(g1(h)) ⊂ o(g2(h)), o(g1(h))+o(g2(h)) = o(g2(h)), and o(g1(h))o(g2(h)) = o(g1(h)g2(h)).

Prob 3. Re-do #2 in little-o notation. That is, if f(a+h) = L + o(1) and
g(a+h) = M + o(1) as h→ 0, then f(x)g(x) = LM + o(1).
hint: This is less tricky than the previous method. Account for the case where L
or M is zero.

Prob 4. Show o(o(h)) ⊂ o(h). That is, if ε1(h)
h
, ε2(h)

h
→ 0, then ε1(ε2(h))

h
→ 0.

hint: Use ε1(ε2(h))
h

= ε1(ε2(h))
ε2(h)

ε2(h)
h

. (Also consider when ε2(h) = 0 for some h 6= 0.)

Derivatives. We say f(x) has derivative f ′(a) when f(a+h) = f(a)+f ′(a)h+o(h).

Prob 5. Prove that if f ′(a) exists, then it is unique: that is, if f(a+h) =
f(a) + d1h+ o(h) = f(a) + d2h+ o(h), then d1 = d2.

Prob 6. Prove that if f ′(g(a)) and g′(a) exist, then the composition k(x) =
f(g(x)) has derivative k′(a) = f ′(g(a)) g′(a).
hint: Combine g(a+h) = g(a) + g′(a)h+ o(h) and f(b+h) = f(b) + f ′(b)h+ o(h)
for b = g(a) and any h going to zero.


