Math 254H Weekly Homework 8 Due Apr 4, 2017

This homework is a tutorial on limits and error analysis.

Delta-epsilon notation. We say lim,_,, f(z) = L, or alternatively f(z) — L as
x — a, when any required output error tolerance € > (0 can be guaranteed by some
input error tolerance § > 0: that is, |x — a|] < ¢ guarantees |f(z) — L| < e.

We say f: R — R is continuous at © = a when lim,_,, f(z) = f(a).

Ezample: Prove that f(z) = 2x+1 is continuous at = = a.
PROOF: We must show lim,_,, f(z) = f(a). Given a required output tolerance
€ > 0 (for example € = 0.01), we set the input tolerance at § = 3¢ (which would
be 6 = 0.005 in our example). If 2 meets the input tolerance [z—a| < § = 1¢, then
the output error is |f(z) — f(a)| = |204+1—(2a+1)| = 2|z—a| < e, satisfying the
output tolerance.
Prob 1. Prove that a limit is a well-defined quantity if it exists: that is, if
lim, ,, f(z) = Ly, and lim,_, f(x) = Lg, then L; = L,.
NOTE: The point here is that the complicated definition lim, ,, f(x) = L could
conceivably apply to two different numbers, both approached by f(z). Show that
|L1 — Ls| < € for every € > 0, which means L; — Ly = 0.
Prob 2. Prove that if ilirtll f(z) = L and }El_r)rtll g(x) = M, then glﬂlgll f(x)g(x) = LM.
HINT: Relate the product error to the individual errors by writing f(z)g(z)—LM =
f(x)g(x) — Lg(x) + Lg(x) — LM.

Similarly, we get that limits are compatible with addition, subtraction, multi-
plication, and division.

Ezample: If g(x) is continuous at z = a, and f(y) is continuous at y = g(a) then
f(g(x)) is continuous at z = a.

Proof: We must show lim,_,, f(g(z)) = f(g(a)). The continuity of f(y) means
that, given € > 0, there is some input tolerance ; > 0 such that |[y—g(a)| < 0y
guarantees |f(y) — f(g(a))| < e. Now, by the continuity of g(x), there is also a
dy > 0 such that |z—a| < 09 guarantees |g(z)—g(a)| < d1, which in turn guarantees
|f(g(x)) — f(g(a))|] < e. This shows the desired limit.



Little-o notation. For a function g(h), we define the order class o(g(h)) of
functions e(h) which become tiny relative to g(h) as h goes to zero:

o(g(h)) = {e(h) with lim =8 =0, and (0) = 0}.

We use this to indicate the magnitude of error in an approximation f(h) = k(h):
f(h) € k(h) +o(g(h)) means f(h)=k(h)+e(h) for e(h) € o(g(h)).

Abusing notation, we write this as f(x) = L 4 o(g(h)), using “=" to mean “€”.

Ezample: lim,_,, f(z) = L whenever f(a+h) = L+ o(1), meaning we have error
W — e(h) = flath)—L — 0as h — 0.

Ezample. Geometric series. We have L =1+ h+ h? + o(h?), since the error is
e(h) = &5 — (14+h+h?) = 1’11_2’13, SO 81(1’21) = —0ash—0.

Ezxample. Prove that o(h) 4+ o(h) = o(h), meaning if €;(h),e9(h) € o(h), then
e1(h) +e2(h) € o(h).

Proof: We have lim &0+e2() _ j5,) aih) hm =04+0=0.
h v
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Similarly, if C'#£0, we have Co(g(h)) = o(g(h)); and if g;(h) < g2(h), we have:
o(g1(h)) C o(g2(h)), o(g1(h))+0(g2(h)) = o(g2(h)), and o(g1(h))o(g2(h)) = 0(g1(h)g2(h)).
Prob 3. Re-do #2 in little-o notation. That is, if f(a+h) = L + o(1) and
gla+h) = M + o(1) as h — 0, then f(z)g(x) = LM + o(1).

HINT: This is less tricky than the previous method. Account for the case where L

or M is zero.

Prob 4. Show o(o(h)) C o(h). That is, if 282 20 o then 2]

HINT: Use = EZ(h)) = Elézi}(f;)) 82}(:‘). (Also consider When go(h) = 0 for some h # 0.)

Derivatives. We say f(z) has derivative f'(a) when f(a+h) = f(a)+f'(a)h+o(h).
Prob 5. Prove that if f’(a) exists, then it is unique: that is, if f(a+h) =
f(a) +dih +o(h) = f(a) + doh + o(h), then d; = d.

Prob 6. Prove that if f'(g(a)) and ¢'(a) exist, then the composition k(z) =

f(g(x)) has derivative k'(a) = f'(g(a)) ¢'(a).
HINT: Combine g(a+h) = g(a) + ¢'(a)h + o(h) and f(b+h) = f(b) + f'(b)h + o(h)
for b = g(a) and any h going to zero.



