
Math 254H Weekly Homework 10 Due Nov 14, 2019

This is a tutorial on definitions and proofs for limits and error analysis. In each
proof, you may use problems and propositions which appeared earlier.

Delta-epsilon framework. Definitions:

• We say lim
x→a

f(x) = L, or f(x) → L as x → a, when any required output

error tolerance ε > 0 can be guaranteed by some input error tolerance δ > 0:
that is, 0 < |x− a| < δ guarantees |f(x)− L| < ε.

This definition does not evaluate the limit, only rigorously verifies a given L
as the limiting value. There might be no L satisfying the definition, in which
case the limit does not exist.

• We say f : R→ R is continuous at x = a when lim
x→a

f(x) = f(a).

Proposition: f(x) = x2 is continuous at x = 5.

Proof: We must show limx→5 x
2 = 52 = 25. For any given output error tolerance

ε > 0 (for example ε = 0.1), we set the input error tolerance at δ = min(1, ε/11)
(δ = 0.009 in our example). Assume |x − 5| < δ meets the input tolerance, so
|x−5| < ε/11 and |x−5| < 1, so 4 < x < 6 and |x+ 5| < 11. The output error is:

|x2 − 52| = |(x−5)(x+5)| = |x−5| |x+5| < ( ε
11

)(11) = ε.

Thus, a sufficiently small input error δ guarantees a given output error ε. �

Proposition: If lim
x→a

f(x) = L and lim
x→a

g(x) = M , then lim
x→a

f(x) + g(x) = L+M .

Proof: Given ε > 0, the known limits give us δ1 > 0 such that 0 < |x − a| < δ1
guarantees |f(x) − L| < ε/2, and δ2 > 0 such that 0 < |x − a| < δ2 guarantees
|g(x)−M | < 1

2
ε. (Here 1

2
ε > 0 is the given error tolerance for the known limits.)

Assume |x− a| < δ = min(δ1, δ2). Then:

|f(x) + g(x)− (L+M)| = |(f(x)−L) + (g(x)−M)|
≤ |f(x)−L|+ |g(x)−M)|
< ε

2
+ ε

2
= ε.

Here we used the Triangle Inequality: |a+ b| ≤ |a|+ |b|. �



Prob 1. Prove a limit cannot converge to two different numbers: that is, if
limx→a f(x) = L1 and limx→a f(x) = L2, then L1 = L2.

Hints: The complicated definition lim
x→a

f(x) = L could conceivably apply to two

different numbers; but show |L1 − L2| < ε for every ε > 0, so L1 − L2 = 0.

Prob 2. Prove if lim
x→a

f(x) = L, lim
x→a

g(x) = M , then lim
x→a

f(x)g(x) = LM .

Hint: Relate error in the product to the errors in each factor by writing:

f(x)g(x)− LM = f(x)g(x)− Lg(x) + Lg(x)− LM.

Similarly, limits are compatible with addition, subtraction, multiplication, division.
Also with composition (substitution), if the functions are continuous:

Proposition: If g(x) is continuous at x = a, and f(y) is continuous at y = g(a)
then f(g(x)) is continuous at x = a.

Proof: We must show limx→a f(g(x)) = f(g(a)). The continuity of f(y) means
that, given ε > 0, there is some input error δ′ > 0 such that |y − g(a)| < δ′

guarantees |f(y) − f(g(a))| < ε. Now, by the continuity of g(x), we can take
δ′ > 0 as the output error for g(x), and find a δ > 0 such that |x−a| < δ guarantees
|g(x) − g(a)| < δ′, which in turn guarantees |f(g(x)) − f(g(a))| < ε. This shows
the desired limit.

Little-o notation. For a magnitude function M(h), we define order class o(M(h))
as all functions ε(h) which become tiny relative to M(h) as h approaches zero:

o(M(h)) =

{
ε(h) with lim

h→0

|ε(h)|
|M(h)|

= 0 and ε(0) = 0

}
.

This measures the error in an approximation f(h) ≈ k(h) for small h ≈ 0:

f(h) = k(h) + o(M(h)) means f(h) = k(h) + ε(h) for some ε(h) ∈ o(M(h)).

In more conventional terminology, f(h) is an element of the shifted set:

f(h) ∈ k(h) + o(M(h)) = {k(h) + ε(h) for ε(h) ∈ o(M(h))}.



Proposition: limx→a f(x) = f(a) is equivalent to f(a+h) = f(a) + o(1).

Proof: By the Sum of Limits Theorem, we have the equivalences:

lim
x→a

f(x) = f(a) ⇐⇒ lim
x→a

f(x)− f(a) = 0 ⇐⇒ lim
x→a

ε(x−a) = 0,

where ε(h) = f(a+h)−f(a). Substituting h = x−a, this is equivalent to lim
h→0

ε(h) =
ε(0) = 0, meaning ε(h) ∈ o(1), or f(a+h) = f(a) + ε(h) = f(a) + o(1). �

Proposition. Letting o(h) + o(h) = {ε1(h) + ε2(h) for ε1(h), ε2(h) ∈ o(h)}, we
have o(h) + o(h) = o(h).

Proof: Since ε(h) = 0 ∈ o(h), clearly o(h) ⊂ o(h)+o(h). For the opposite inclusion,
take ε1(h), ε2(h) ∈ o(h), and compute:

lim
h→0

ε1(h) + ε2(h)

h
= lim

h→0

ε1(h)

h
+ lim

h→0

ε2(h)

h
= 0 + 0 = 0.

Thus ε1(h) + ε2(h) ∈ o(h) and o(h) + o(h) ⊂ o(h). �

Similarly, for C 6=0, we have C o(M(h)) = o(M(h)). If |M1(h)| ≤ |M2(h)|, then:

o(M1(h)) ⊂ o(M2(h))

o(M1(h)) + o(M2(h)) = o(M2(h))

o(M1(h)) o(M2(h)) = M1(h) o(M2(h)) = o(M1(h)M2(h)).

Prop: Letting o(o(M(h))) =
⋃

ε(h)∈o(M(h))
o(ε(h)), we have o(o(M(h))) = o(M(h)).

Proof: Clearly o(o(h)) ⊂ o(h). For for the opposite inclusion, we must show that
for any ε1(h) ∈ o(M(h)), there is some ε2(h) ∈ o(M(h)) with ε1(h) ∈ o(ε2(h)).
By definition, we have the ratio ρ(h) = |ε1(h)/M(h)| → 0 as h → 0, so also√
ρ(h)→ 0. Thus ε2(h) =

√
ρ(h)M(h) ∈ o(M(h)), and we have:∣∣∣∣ε1(h)

ε2(h)

∣∣∣∣ =
ρ(h) |M(h)|√
ρ(h) |M(h)|

=
√
ρ(h) → 0,

so ε1(h) ∈ o(ε2(h)), and we conclude o(h) ⊂ o(o(h)).

Prob 3. Re-do #2 in little-o notation, for continuous functions: if f(a+h) =
f(a) + o(1) and g(a+h) = g(a) + o(1) as h→ 0, then f(x)g(x) = f(a)g(a) + o(1).

Hint: This is immediate, using the above facts. Also consider if f(a) or g(a) = 0.



Prob 4. For two classes of functions c1(h), c2(h), define their composition:

c1(h) ◦ c2(h) = {ε1(ε2(h)) for ε1(h) ∈ c1(h), ε2(h) ∈ c2(h)}.

Show that o(h) ◦ (Ch + o(h)) ⊂ o(h) for any constant C: that is, if ε1(h), ε2(h) ∈
o(h), then ε1(Ch+ ε2(h)) ∈ o(h). Extra Credit: Show o(h) ◦ (Ch+ o(h)) = o(h).

hint: Use ε1(Ch+ε2(h))
h

= ε1(Ch+ε2(h))
Ch+ε2(h)

Ch+ε2(h)
h

. (What to do if Ch+ ε2(h) = 0?)

Derivatives. A derivative means a limit f ′(a) = lim
x→a

f(x)−f(a)
x−a , if it exists.

In o-notation, the derivative is the slope in a good linear approximation f(a+h) =
f(a) + f ′(a)h+ o(h).

Prob 5. Prove that if a good linear approximation exists, then it is unique:

f(a+h) = f(a) +m1h+ o(h) = f(a) +m2h+ o(h) ⇒ m1 = m2.

Proposition: f(a+h) = f(a) +mh+ o(h) if and only if m = f ′(a).

Proof. Suppose f(a+h) = f(a) +mh+ o(h), meaning f(a+h) = f(a) +mh+ ε(h)

for a function ε(h) ∈ o(h), so that lim
h→0

ε(h)
h

= 0. Solving for m and letting h→ 0:

m = lim
h→0

f(a+h)−f(a)
h

+ ε(h)
h

= f ′(a) + 0.

Conversely, if m = f ′(a) = limh→0
f(a+h)−f(a)

h
, then f(a+h)−f(a)

h
= m + o(1)

by a previous proposition, so f(a+h) − f(a) = mh + h o(1) = mh + o(h) and
f(a+h) = f(a) +mh+ o(h). �

Prob 6. Prove that if f ′(g(a)) and g′(a) exist, then the composition k(x) =
f(g(x)) has derivative k′(a) = f ′(g(a)) g′(a).

Higher-order approximation.

Prob 7. Prove the geometric series approximation 1
1−h = 1 + h+ h2 + o(h2).



Quotient Rule.

Proposition: If limh→0 q(h) = 0, then 1
1−q(h) = 1 + q(h) + o(q(h)).

Proof: The error in the approxmation is:

ε(h) =
1

1− q(h)
− (1+q(h)) =

1− (1−q(h)2)

1− q(h)
=

q(h)2

1− q(h)
,

so ε(h)/q(h) = q(h)/(1−q(h))→ 0/(1−0) = 0. �

Finally, we approximate f(x)
g(x)

near x = a, assuming g(a) 6= 0:

f(a+h)

g(a+h)
=

f(a) + f ′(a)h+ o(h)

g(a) + g′(a)h+ o(h)

=
f(a) + f ′(a)h+ o(h)

g(a)(1− q(h))
, q(h) = −g′(a)

g(a)
h− o(h)

= 1
g(a)

(
f(a) + f ′(a)h+ o(h)

)(
1 + q(h) + o(q(h))

)
= 1

g(a)

(
f(a) + f ′(a)h+ o(h)

)(
1− g′(a)

g(a)
h+ o(h)

)
= 1

g(a)

(
f(a) + f ′(a)h− f(a)g

′(a)
g(a)

h+ o(h)
)
.

The coefficient of h gives the derivative of f(x)
g(x)

at x = a:

f ′(a)− f(a)g
′(a)
g(a)

g(a)
=

f ′(a)g(a)− f(a)g′(a)

g(a)2
.


