Math 254H Weekly Homework 10 Due Nov 14, 2019

This is a tutorial on definitions and proofs for limits and error analysis. In each
proof, you may use problems and propositions which appeared earlier.

Delta-epsilon framework. Definitions:

e We say lim f(z) = L, or f(x) — L as * — a, when any required output
T—a
error tolerance € > (0 can be guaranteed by some input error tolerance § > 0:
that is, 0 < |x — a| < 0 guarantees |f(z) — L| < e.

This definition does not evaluate the limit, only rigorously verifies a given L
as the limiting value. There might be no L satisfying the definition, in which
case the limit does not exist.

e Wesay f: R — R is continuous at © = a when lim f(z) = f(a).
T—a

PROPOSITION: f(z) = 22 is continuous at z = 5.

Proof: We must show lim,_,5 2? = 5% = 25. For any given output error tolerance
e > 0 (for example € = 0.1), we set the input error tolerance at § = min(1,¢/11)
(0 = 0.009 in our example). Assume |x — 5| < & meets the input tolerance, so
|lz—5] < ¢/11 and |x—5| < 1,s04 <z < 6 and |z + 5| < 11. The output error is:

2* = 5°| = |(z=5)(z+5)| = |z—5|]z+5] < (§)(11) = e
Thus, a sufficiently small input error § guarantees a given output error e. [

PROPOSITION: If lim f(z) = L and lim g(z) = M, then lim f(z)+g(x) = L+ M.
T—a T—a T—a

Proof: Given € > 0, the known limits give us §; > 0 such that 0 < |z — a|] < §;
guarantees |f(z) — L| < €/2, and d2 > 0 such that 0 < |z — a| < dy guarantees
lg(x) — M| < e. (Here 3¢ > 0 is the given error tolerance for the known limits. )
Assume |z — a| < 0 = min(dy, d2). Then:

[f(@) +g(z) = (L+M)] = [(f(x)=L)+ (9(x)=M)]
< |f@)=L[ + |g(z)—-M)|
< 5+35 =¢

Here we used the Triangle Inequality: |a + b| < |a| + [b]. ]



Prob 1. Prove a limit cannot converge to two different numbers: that is, if
lim,,, f(z) = Ly and lim,_,, f(x) = Lo, then Ly = Ls.

Hints: The complicated definition lim f(z) = L could conceivably apply to two
Tr—a
different numbers; but show |L; — Ls| < € for every € > 0, so L1 — Ly = 0.

Prob 2. Prove if lim f(z) = L, lim g(x) = M, then lim f(x)g(z) = LM.
T—a T—a T—a

Hint: Relate error in the product to the errors in each factor by writing:

f(@)ga) — LM = f(a)g(x) — Lg(x) + L g(x) — LM.

Similarly, limits are compatible with addition, subtraction, multiplication, division.
Also with composition (substitution), if the functions are continuous:

PROPOSITION: If g(x) is continuous at x = a, and f(y) is continuous at y = g(a)
then f(g(x)) is continuous at x = a.

Proof: 'We must show lim,,, f(g(z)) = f(g(a)). The continuity of f(y) means
that, given £ > 0, there is some input error ¢’ > 0 such that |y — g(a)] < ¢
guarantees |f(y) — f(g(a))| < e. Now, by the continuity of g(x), we can take
d’ > 0 as the output error for g(z), and find a § > 0 such that |z—a| < ¢ guarantees
lg(x) — g(a)| < ¢, which in turn guarantees |f(g(x)) — f(g(a))| < e. This shows
the desired limit.

Little-o notation. For a magnitude function M (h), we define order class o( M (h))
as all functions e(h) which become tiny relative to M (h) as h approaches zero:

o(M(h)) = {s(h) with ;{%% =0 and ¢(0) = O} :

This measures the error in an approximation f(h) ~ k(h) for small h = 0:
f(h) =k(h)+o(M(h)) means f(h)=k(h)+e(h) for some e(h) € o(M(h)).
In more conventional terminology, f(h) is an element of the shifted set:

f(h) € k(h)+ o(M(h)) = {k(h) + e(h) for e(h) € o(M(h))}.



PROPOSITION: lim,_,, f(x) = f(a) is equivalent to f(a+h) = f(a) + o(1).

Proof: By the Sum of Limits Theorem, we have the equivalences:

lim f(z) = f(a) < limf(z)— f(a) =0 <= lime(z—a) =0,

rT—a Tr—a T—a

where e(h) = f(a+h)— f(a). Substituting h = z—a, this is equivalent to lim e(h) =
£(0) = 0, meaning e(h) € o(1), or f(a+h) = f(a)+£(h) = f(a) + o(1)." "
PROPOSITION. Letting o(h) + o(h) = {e1(h) + e2(h) for 1(h),e2(h) € o(h)}, we
have o(h) + o(h) = o(h).

Proof: Since (h) = 0 € o(h), clearly o(h) C o(h)+o(h). For the opposite inclusion,
take £1(h),e2(h) € o(h), and compute:

fg S T E2) o alh) ey

h—0 h h—0 h h—0 h
Thus £1(h) + e2(h) € o(h) and o(h) + o(h) C o(h). "
Similarly, for C#0, we have C' o(M(h)) = o(M(h)). If |M;(h)| < |Ms(h)|, then:

Mi(h)) C o(Ma(h))
o(Mi(h)) + o(Ma(h)) = o(Ma(h))
o(Mi(h)) o(My(h)) = Mi(h)o(Ms(h)) = o(Mi(h)Mx(h)).

Prop: Letting o(o(M(h))) = Ue(h)eo(M(h)) o(e(h)), we have o(o(M(h))) = o(M (h)).

Proof: Clearly o(o(h)) C o(h). For for the opposite inclusion, we must show that

for any e1(h) € o(M(h)), there is some e2(h) € o(M(h)) with £1(h) € o(ea2(h)).

By definition, we have the ratio p(h) = |e1(h)/M(h)| — 0 as h — 0, so also
p(h) — 0. Thus ey(h) = \/p(h)M(h) € o(M(h)), and we have:

sl(h)' p(h )IM(h)I

ea(h) Vp(h) [ M(h)|
) C

so €1(h) € o(e2(h)), and we conclude o(h

p(h) — 0,

o(o(h)).

Prob 3. Re-do #2 in little-o notation, for continuous functions: if f(a+h
f(a) 4+ o(1) and g(a+h) = g(a) +o(1) as h — 0, then f(x)g(x) = f(a)g(a) +
Hint: This is immediate, using the above facts. Also consider if f(a) or g(a)

)
o(1).
=0.



Prob 4. For two classes of functions ¢;(h), ca(h), define their composition:
c1(h)oca(h) = {e1(ez(h)) for e1(h) € c1(h),e2(h) € ca(h)}.

Show that o(h) o (Ch + o(h)) C o(h) for any constant C: that is, if £1(h),eo(h) €
o(h), then 1(Ch + e5(h)) € o(h). Extra Credzt Show o(h) o (Ch + o(h)) = o(h).

HINT: Use = Ch+€2(h)) = El(cii_fgi?(?)) Ch+62 ) (What to do if Ch + 5(h) = 07?)

f(@)—f(a) ) f(a)

Derivatives. A derivative means a limit f/'(a) = lim , if it exists.

T—a

In o-notation, the derivative is the slope in a good linear approximation f(a+h) =

f(a) + f'(a)h + o(h).
Prob 5. Prove that if a good linear approximation exists, then it is unique:
flath) = f(a)+mih+o(h) = f(a)+mb+oh) = my=m,.

PROPOSITION: f(a+h) = f(a) +mh + o(h) if and only if m = f'(a).
Proof. Suppose f(a+h) = f(a) +mh+ o(h), meaning f(a+h) = f(a) +mh+e(h)

for a function £(h) € o(h), so that }lllrr(l) (h) = 0. Solving for m and letting h — 0:
—
L fath—f@) | e
m = }ILILI(I) . + =5 f'(a) +0.
Conversely, if m = f'(a) = limh_m% then % = m + o(1)
by a previous proposition, so f(a+h) — f(a) = mh + ho(1) = mh + o(h) and
fla+h) = f(a) + mh+ o(h). ]

Prob 6. Prove that if f'(g(a)) and ¢'(a) exist, then the composition k(z) =
f(g(x)) has derivative k'(a) = f'(g(a)) ¢'(a).

Higher-order approximation.

Prob 7. Prove the geometric series approximation - = 1+ h+ h? + o(h?).



Quotient Rule.

PROPOSITION: If lim0 q(h) = 0, then — 75 =1+ q(h) + o(q(h)).
Proof: The error in the approxmation is:

1—(1=q(h)*) _  q(h)?
1—q(h) 1—q(h)’

“(h) = T~ (rah) =

so £(h)/q(h) = q(h)/(1=q(h)) = 0/(1-0) = 0.

Finally, we approximate g—”T near r = a, assuming g(a) # 0:

)
)
flath) f(a)

_ + f'(a)h + o(h)
gla+h) g(a) + g'(a)h + o(h)
_ fla) + fi(a)h + o(h) o(h) _Z'((;L;h —o(h)

= 5 (F@) + f@h = f@)Z8h+ o(h)) .

The coefficient of h gives the derivative of f ) at T = a:




