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1 Notation. We denote a vector in n-dimensional space Rn by:

~x = (x1, . . . , xn) = x1~e1 + · · ·+ xn~en,

where the standard basis vector ~ei = (0, . . . , 1, . . . , 0) has a 1 in the ith place.
We will work with a scalar-valued function f : Rn → R, so that f(~x) =

f(x1, . . . , xn) is a number.

2 Definition of Limit. lim~x→~c f(~x) = L means that any output error tolerance
of f(~x) away from L is guaranteed by some input error tolerance of ~x from ~c. That
is, for any output tolerance ε > 0, there is some input tolerance δ > 0 with:

0 < |~x− ~c| < δ =⇒ |f(~x)− L| < ε,

where “=⇒” means “implies” or “guarantees”.
Note that the definition makes sense even if f(~x) is only defined for ~x in some

punctured open ball around ~c, for 0 < |~x− ~c| < r.

3 Limit Laws. If lim~x→~c f(~x) = L and lim~x→~c g(~x) = M , then:

(a) lim
~x→~c

f(x) + g(x) = L+M

(b) lim
~x→~c

f(x)g(x) = LM

(c) lim
~x→~c

f(x)/g(x) = L/M , provided M 6= 0

Proof of (b). By hypothesis, we assume that any desired output errors for f(~x) and
g(~x) can be guaranteed by some input error for ~x. We proceed to find an upper
bound (ceiling) for the output error of f(~x)g(~x) in terms of the controllable errors
of f(~x) and g(~x).

|f(~x)g(~x)− LM | = |f(~x)g(~x)− f(~x)M + f(~x)M − LM |

≤ |f(~x)g(~x)− f(~x)M | + |f(~x)M − LM | because |u+ v| ≤ |u|+ |v|

= |f(~x)| |g(~x)−M | + |M | |f(~x)−L|.

Now, given a desired ε > 0, choose δ small enough that 0 < |~x− ~c| < δ guarantees:

|f(~x)− L| < 1, |f(~x)− L| < ε

2(|L|+ 1)
, |g(~x)−M | < ε

2(|M |+ 1)
.

The first inequality assures |f(x)| < |L|+ 1, so our previous estimate guarantees:

|f(~x)g(~x)− LM | ≤ (|L|+1)
ε

2(|L|+ 1)
+ (|M |+1)

ε

2(|M |+ 1)
= ε.

We conclude that any desired output tolerance ε > 0 for f(~x)g(~x) can be guaranteed
by some input tolerance δ, which is the definition of lim~x→~c f(~x)g(~x) = LM . �



4 Continuity. We say that f(~x) is continuous at ~x = ~c when lim~x→~c f(~x) = f(~c).

Proposition: For functions f : Rn → R and g : R→ R, if f(~x) is continuous at ~x = ~c,
and g(y) is continous at y = f(~c), then the composition g(f(~x)) is continuous at
~x = ~c.

Proof. By hypothesis, we assume that the output errors of f(~x) and g(y) can be
controlled near ~x = ~c and y = f(~c). We chain these error bounds together to control
the error of g(f(~x)).

Given ε > 0, choose δ′ > 0 so that |y−f(~c)| < δ′ guarantees |g(y)−g(f(~c))| < ε.
Now, taking δ′ as an output error tolerance for f(~x), choose δ > 0 so that |~x−~c| < δ
guarantees |f(~x)− f(~c)| < δ′. Then we have:

|~x− ~c| < δ =⇒ |f(~x)− f(~c)| < δ′ =⇒ |g(f(~x))− g(f(~c))| < ε,

which means lim~x→~c g(f(~x)) = g(f(~c)). Conclusion: g(f(~x)) is continuous at ~c. �

5 Linear Mappings. We say a function ` : Rn → R is a linear mapping if
`(s~u+ t~v) = s `(~u) + t `(~v) for all vectors ~u,~v and scalars s, t. Thus we have:

`(~x) = `(x1~e1 + · · ·xn~en) = x1`(~e1) + · · ·+ xn`(~en) = ~̀· ~x,

the dot product of ~x with the vector ~̀ = (`(~e1), . . . , `(en)). In linear algebra, we
call ~̀ the matrix of the linear mapping `(~x).

An affine mapping means a linear mapping plus a constant: m(~x) = `(~x) + b.

6 Definition of Derivative. The derivative of a function f : Rn → R at ~x = ~c is
a linear mapping Df~c : Rn → R which gives a very accurate affine approximation:

f(~x) ≈ f(~c) +Df~c(~x−~c) for ~x ≈ ~c.

The error in the approximation must be vanishingly small relative to |~x− ~c|:

lim
~x→~c

|f(~x)− f(~c)−Df~c(~x−~c)|
|~x− ~c|

= 0.

7 Partial Derivative Theorem: If the functions ∂f
∂x1

(~x), . . . , ∂f∂xn (~x) exist and
are continuous near ~x = ~c, then Df~c(~x) exists and equals the dot product of ~x with
the gradient vector:

Df~c(~x) = ∇f(~c) · ~x where ∇f(~c) = ( ∂f∂x1 (~c), . . . , ∂f∂xn (~c)).

Proof: For notational simplicity, we prove only the case n = 2, but the general case
is completely analogous. We let ~x = (x, y) and ~c = (a, b). As part of the hypothesis,
we assume the following limit values:

lim
x→a

f(x,b)−f(a,b)
x−a = ∂f

∂x (a, b), lim
y→b

f(x,y)−f(x,b)
y−b = ∂f

∂y (x, b), lim
x→a

∂f
∂y (x, b) = ∂f

∂y (a, b).



To prove the conclusion, we must show the accuracy of the approximation:

f(x, y) ≈ f(a, b) + ∂f
∂x(a, b) (x−a) + ∂f

∂y(a, b) (y−b).

Specifically, we will find upper bounds for the error in terms of the controllable
errors coming from the above three limits. We have:∣∣∣f(x, y)− f(a, b)− ∂f

∂x(a, b) (x−a)− ∂f
∂y(a, b) (y−b)

∣∣∣
|(x, y)− (a, b)|

=

∣∣∣f(x, y)− f(x, b)− ∂f
∂y(a, b) (y−b) + f(x, b)− f(a, b)− ∂f

∂x(a, b) (x−a)
∣∣∣

|(x−a, y−b)|

≤

∣∣∣f(x, y)− f(x, b)− ∂f
∂y(a, b) (y−b)

∣∣∣
|(x−a, y−b)|

+

∣∣∣f(x, b)− f(a, b)− ∂f
∂x(a, b) (x−a)

∣∣∣
|(x−a, y−b)|

≤

∣∣∣f(x, y)− f(x, b)− ∂f
∂y(a, b) (y−b)

∣∣∣
|y − b|

+

∣∣∣f(x, b)− f(a, b)− ∂f
∂x(a, b) (x−a)

∣∣∣
|x− a|

≤
∣∣∣∣f(x, y)− f(x, b)

y − b
− ∂f

∂y
(a, b)

∣∣∣∣ +

∣∣∣∣f(x, b)− f(a, b)

x− a
− ∂f

∂x
(a, b)

∣∣∣∣
≤

∣∣∣∣f(x, y)− f(x, b)

y − b
− ∂f

∂y
(x, b)

∣∣∣∣ +

∣∣∣∣∂f∂y(x, b)− ∂f

∂y
(a, b)

∣∣∣∣ +

∣∣∣∣f(x, b)− f(a, b)

x− a
− ∂f

∂x
(a, b)

∣∣∣∣
The fourth line follows because |(x−a, y−b)| ≥ |x−a|, |y−b|; and in the last line, we
used the triangle inequality |u− v| ≤ |u− w|+ |w − v| for w = ∂f

∂y(x, b).
Now the three terms at the end of the above estimate all go to zero as (x, y)→

(a, b), by the three limit values mentioned above. (Specifically, there is some input
error |(x, y)− (a, b)| < δ which guarantees that each of the three terms is less than
ε
3 , so that the total output error is less than ε.) Thus we conclude:

lim
(x,y)→(a,,b)

∣∣∣f(x, y)− f(a, b)− ∂f
∂x(a, b) (x−a)− ∂f

∂y(a, b) (y−b)
∣∣∣

|(x, y)− (a, b)|
= 0,

which means by definition that Df(a,b)(x, y) = ∇f(a, b) · (x, y). �

Note that the proof only needed the continuity of one of the partial derivatives. For
general n, we need n−1 of them continuous at ~x = ~c.



8 Derivative Product Theorem: If the functions f, g : Rn → R are differentiable
at ~x = ~c, then the product function f(~x) g(~x) has derivative mapping:

D(fg)~c(~x) = f(~c)Df~c(~x) + g(~c)Dg~c(~x).

Proof. We must show the accuracy of the approximation:

f(~x) g(~x) ≈ f(~c) g(~c) + f(~c)Dg~c(~x−~c) + g(~c)Df~c(~x−~c).

We have:

|f(~x)g(~x) − f(~c)g(~c) − f(~c)Dg~c(~x−~c) − g(~c)Df~c(~x−~c)|
|~x− ~c|

=
|f(~x)g(~x) − f(~x)g(~c) − f(~c)Dg~c(~x−~c) + f(~x)g(~c) − f(~c)g(~c) − g(~c)Df~c(~x−~c)|

|~x− ~c|

≤ |f(~x)g(~x) − f(~x)g(~c) − f(~c)Dg~c(~x−~c)|
|~x− ~c|

+
|f(~x) g(~c) − f(~c) g(~c) − g(~c)Df~c(~x−~c)|

|~x− ~c|

≤ |f(~x)g(~x) − f(~x)g(~c) − f(~x)Dg~c(~x−~c)|
|~x− ~c|

+
|f(~x)Dg~c(~x−~c) − f(~c)Dg~c(~x−~c)|

|~x− ~c|

+
|f(~x) − f(~c) − Df~c(~x−~c)|

|~x− ~c|
|g(~c)|

= |f(~x)| |g(~x) − g(~c) − Dg~c(~x−~c)|
|~x− ~c|

+ |f(~x)− f(~c)| |Dg~c(~x−~c)|
|~x− ~c|

+
|f(~x) − f(~c) − Df~c(~x−~c)|

|~x− ~c|
|g(~c)|

Now each of the three terms on the last line goes to zero, because by hypothesis
f(~x) ≈ f(c) +Df~c(~x−~c), g(~x) ≈ g(~c) +Dg~c(~x−~c), and:

|Df~c(~x−~c)|
|~x−~c|

=

∣∣∣∣∇f(~c) · ~x−~c
|~x−~c|

∣∣∣∣ ≤ |∇f(~c)| .


