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1 Notation. We denote a vector in n-dimensional space R™ by:
= (x1,...,%n) = T1€1 + -+ + Tp€p,

where the standard basis vector & = (0,...,1,...,0) has a 1 in the i*" place.
We will work with a scalar-valued function f : R" — R, so that f(Z) =
f(x1,...,2,) is a number.

2 Definition of Limit. limz ,z f(#¥) = L means that any output error tolerance
of f(¥) away from L is guaranteed by some input error tolerance of & from ¢. That
is, for any output tolerance € > 0, there is some input tolerance § > 0 with:

0<|Z¥—¢l<d = |f(@)—L|<e
where “=" means “implies” or “guarantees”.
Note that the definition makes sense even if f(Z) is only defined for Z in some
punctured open ball around ¢, for 0 < |Z —¢] < 7.
3 Limit Laws. If limz ,z f(Z) = L and limz .z¢(Z) = M, then:

() lm f(@)+g(e) = L+ M

(b) lim f(z)gla) = LM

T—cC
(c) lim f(x)/g(x) = L/M, provided M #0
r—cC
Proof of (b). By hypothesis, we assume that any desired output errors for f(Z) and
g(Z) can be guaranteed by some input error for . We proceed to find an upper

bound (ceiling) for the output error of f(Z)g(Z) in terms of the controllable errors
of f(¥) and ¢(&).

[f(@)g(Z) — LM| = [f(£)g(¥) — f(Z)M + f(Z)M — LM|
|F(@)g(
= [f@I1g(@)-M| + [M[|f(Z)-L|.

Now, given a desired € > 0, choose § small enough that 0 < |Z — ¢ < § guarantees:

IN
8

) — f(@)M]| + |f(Z)M — LM| because |u + v| < |u| + |v]

€ €
7)—L| <1, Z)— L < =, ) —M < ———.
The first inequality assures |f(x)| < |L| + 1, so our previous estimate guarantees:
€
2)g(@) — LM| < (|[L|+]) 77—~ + (M|+]l) 577 = e
We conclude that any desired output tolerance € > 0 for f(Z)g(Z) can be guaranteed
by some input tolerance d, which is the definition of limz ,z f(Z)g(Z) = LM. O

€



4 Continuity. We say that f(Z) is continuous at & = ¢ when limgz ,z f(Z) = f(C).

Proposition: For functions f : R — Rand g : R — R, if f(&) is continuous at & = ¢,
and ¢(y) is continous at y = f(€), then the composition g(f(¥)) is continuous at
T =F¢.
Proof. By hypothesis, we assume that the output errors of f(Z) and g(y) can be
controlled near ¥ = ¢and y = f(¢). We chain these error bounds together to control
the error of g(f(Z)).

Given € > 0, choose &' > 0 so that |y — f(¢)| < &' guarantees |g(y) —g(f(2))] < e.
Now, taking ¢’ as an output error tolerance for f(Z), choose § > 0 so that |Z—¢] < ¢
guarantees |f(Z) — f(€)] < §’. Then we have:

[i—c<d = |f@)-fOI<d = |g(f(@)—g(f(@)] <e
which means limz .z g(f(Z)) = g(f(€)). Conclusion: g(f(Z)) is continuous at ¢. [

5 Linear Mappings. We say a function ¢ : R” — R is a linear mapping if
U(st + t7) = sl(d) + t £(V) for all vectors @, v and scalars s,¢. Thus we have:

—

UE) = (218 + - 2n@y) = 210(E1) + - + 2 l(En) = (-7,

the dot product of Z with the vector £ = (£(&}),...,4(en)). In linear algebra, we
call ¢ the matriz of the linear mapping ¢(Z).
An affine mapping means a linear mapping plus a constant: m(&) = (%) + b.

6 Definition of Derivative. The derivative of a function f: R"™ — R at £ = Cis
a linear mapping Dfz: R™ — R which gives a very accurate affine approximation:

f(@) = f(&)+ Dfz(¥—¢) for ZF=c.
The error in the approximation must be vanishingly small relative to |Z — ¢|:

f(®) — £(&) — Dfeld-2)| _

lim 0.
i—c |7 — ¢
7 Partial Derivative Theorem: If the functions %(5), cee aa—f(f) exist and
1 Tn

are continuous near ¥ = ¢, then Dfz(Z) exists and equals the dot product of Z with
the gradient vector:

DfA#) = V(@) where V(@) = (2L(@),.., 2L(@).

Proof: For notational simplicity, we prove only the case n = 2, but the general case
is completely analogous. We let & = (z,y) and ¢ = (a,b). As part of the hypothesis,
we assume the following limit values:

lim HED=S0D) — 0L p),  lim L20SED O ) lim 2L (2, b) = &L (a,b).

ra T—a — Oz y—b Y T—a 9y



To prove the conclusion, we must show the accuracy of the approximation:

fy) =~ fa,b)+ 5a,b) (x—a) + FL(a,b) (y-b).

Specifically, we will find upper bounds for the error in terms of the controllable
errors coming from the above three limits. We have:

(@) = fla.) = Fa,b) (2=a) - §a.b) (y=b)|

@) = (@,b)
) [#(,y) = Fl@.b) = Ga.b) (4=b) + F(.b) — f(a.b) = §Ha,b) (a—a)
) (a=a, y=b)
< #a9) = 1@8) = e b @) - Flab) = Ga.b) (o-a)
- (=a, y=0) (@=a, y=b)
) = fla.b) = GHab) (r-b)| | f(@.b) — F(a,b) - Ga,b) (a—a)
< +
y 0] 7=l
. 'fwy SICLL w4_fw2:£@w_ggmw
f(ajvy) — f(va) af 8f af f(CE,b) — f(a7 b) af
: ‘ y—b _%(x’b)‘ i ‘%(x’b) ™ b)‘ i ‘ v—a Oz

The fourth line follows because |(x—a,y—b)| > |x—al|, |y—b|; and in the last line, we
used the triangle inequality |u — v| < |u — w| + |w — v| for w = g—g(aj, b).

Now the three terms at the end of the above estimate all go to zero as (z,y) —
(a,b), by the three limit values mentioned above. (Specifically, there is some input
error |(x,y) — (a,b)| < § which guarantees that each of the three terms is less than
£, so that the total output error is less than e.) Thus we conclude:

f(@,y) = f(a,b) = GL(a,b) (z—a) — §L(a,b) (y—b)

lim = 05
(z,y)—>(a,,b) ’(xv y) - (a’7 b)|
which means by definition that Df, ) (x,y) = Vf(a,b) - (z,y). O

Note that the proof only needed the continuity of one of the partial derivatives. For
general n, we need n—1 of them continuous at & = ¢.



8 Derivative Product Theorem: If the functions f, g : R" — R are differentiable
at & = ¢, then the product function f(Z) g(Z) has derivative mapping;:

D(fg)e(®) = f(€) Dfe(T) + g(¢) Dge(T).

Proof. We must show the accuracy of the approximation:

f(@)g(@) ~ f(€)g(c) + f(©) Dgae(Z—¢) + g(¢) Dfe(Z=0).

We have:
(s1ots) = 19910 = #9 DodE=0) = (0 A=)

- \f0te) = 210 = 19 D05=0) + /e = 001 = o0 et
< ohota) = £000 — HODarta=0) , 1160 = FO5(0 = o0 Do)
< (00 = S@0(0 — 19 Par=0) | 116) Dod=0) — 0 D=0
WELELEL
— 1) 1= = DAL ) - oy D

/(%) = f(6) = Dfe(¥=2)| 19()|

i 7—4

Now each of the three terms on the last line goes to zero, because by hypothesis
f(@) = f(c) + Dfe(i=0), 9(Z) =~ g(¢) + Dgs(Z—c), and:

DEEA] _ o,
- [we

-

r—c

Ea

< [VF(@)].



