Math 133 Improper Integrals Stewart §7.8

Integrals near a vertical asymptote. What happens if we take the integral of a
function over an interval containing a vertical asymptote, such as:
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Algebraically, we would get I = In|2| —In|0|, but In(0) is undefined. Numerically, the
Riemann sum for I does not converge, because of the very large values of f(z) near
x = 0. Geometrically, I measures a region (the positive area in the graph on the next
page) which stretches infinitely along the asymptote = 0, and the meaning of such
an infinitely extended area is not clear.

Our previous definitions fail to give meaning to this integral, so we give a new

definition:
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That is, we take the integral over the interval x € [r, 2] where the function is continuous,
then take the limit as r squeezes up against the asymptote x = 0 from the right. Now,
ff 1dz =n|2|—In|r|, and lim, ,o+ In(r) = —oo, meaning In(r) becomes a larger and
larger negative number, so the improper integral is:*
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This says that the total area under the graph y = % and above [0,2] is infinite:
no matter how many square units of paint are put on this region, there will still be
unpainted area high up next to the asymptote.

General definition: If the function f(x) has a vertical asymptote near x = ¢, we
define the improper integral of vertical type:
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e on an interval [a, q] as / f(z)dr = lim f(z) dz;
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e on an interval [g,b] as / f(z)dx = lim / f(z)dz.
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e on an interval with ¢ € (a,b) as / f(z)dz = / f(z)dx +/ f(z)dx.
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If such an integral has a finite value, we say it converges; if it is infinite or undefined,
we say it diverges.

Notes by Peter Magyar magyar@math.msu.edu
*We take In(2) minus a larger and larger negative number; and this equals a larger and larger
positive number, denoted by co.



EXAMPLE: Evaluate [ 31 % dx. This attempts to measure two infinite regions: one above
[0, 2] along the positive y-axis, and another below [—1, 0] along the negative y-axis.
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The improper integral avoids the asymptote from both sides:
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But when we try to calculate this, we get:
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/ —dx = <lim ln|r|—ln|—1|> + <lirn ln]2|—ln]r|> = —00+ 00,
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which is an indeterminate form: the integral is truly undefined. We have no clear
meaning for an infinite positive area canceled by an infinite negative area. In particular,
the naive answer is wrong:
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/ ;dw = undefined # In|2| —In|—1].
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— dx. Since the vertical asymptote is * = 1, we have:
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EXAMPLE: Evaluate [|
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= lim 2v2-1—-2vr—-1 = 2—-0 = 2.
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In this case, the region has a finite area of 2, even though it stretches infinitely high

along the vertical asymptote. Thus, if we have enough paint for 2 square units, and
paint higher and higher parts of the region using less and less paint, we never run out.



Integrals near a horizontal asymptote. If y = f(x) has y = 0 as a horizontal
asymptote, we can define improper integrals of horizontal type.

o If lim, .o f(x) =0, we define the integral on an interval [a, c0) as:
T

/OO f(x)dx = lim f(x)dx.
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o If lim, .o f(x) =0, we define the integral over an interval (—oo, a] as:
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/_ﬂ f(x)dz = lim f(x) dx.

o If lim, 1 f(z) = 0, we define its integral over the whole real line (—oc, c0) by
splitting at any finite value x = a:
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This integral measures a region which stretches infinitely along the x-axis above [1, 00),
but which has a finite total area of 1.

On the other hand floo ﬁ dr = limy00 2y/x [,_] = oco. In fact, floo l%p dx is
finite if p > 1, but is infinite if p < 1. Informally, the faster f(x) shrinks as x — oo,
the easier it is for the integral to converge to a finite value.

EXAMPLE: fooo e Pdr =lim,_ s fg e Vdr = lim, o —e_m\::ig =—-0—-(-1)=1.
It is not surprising that this converges, because e~* shrinks faster than xip for any p.

EXAMPLE:
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= Tgr_noo tan l(m)‘x:T + Tlggo tan l(x)}mzo = 0-(-%)+(3-0) = .

Remarkably, the total area under y = ﬁ turns out to be 7, same as a unit circle!
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Comparison tests for convergence. Sometimes an improper integral is too compli-
cated to find an algebraic antiderivative, but we can still be sure it converges because
the infinite region measured fits inside a larger region of known finite area.

For example, the Gaussian bell-curve integral floo e~ dx cannot be integrated by
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an antiderivative. However, for > 1, we have 22 > z, so e™® < e %: that is, the
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curve y = e~ %" lies below y = e™*:
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We can easily evaluate the area below the upper curve, which shows that the smaller
area under the lower curve is finite, i.e. the improper integral converges:

/ e dr < / e ¥dr = 0—(—e ) = 1~ 037.
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Direct Comparison Test: Consider an improper integral fab g(z), with @ or b infinite.
o If |f(x)| <g(z) for x € [a,b], and ffg(:n) dx converges, then ff f(z) dz converges.

o If f(z)>g(x)>0 for z € [a,b] and f:g(x) dx diverges, then f: f(z) dx diverges.

The proof uses the Domination Rule for ordinary integrals (§4.2), plus some complica-
tions with limits.

EXAMPLE: Does fooo % dx converge? This function shrinks rapidly, since the top

does not grow, and the bottom grows exponentially; thus we guess that the integral con-
verges. To prove this using the first part of the Test, we should bound f(x) = dsin@)+1
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inside the graph of a fairly simple comparison function g(z) = Z;gg with | f(x)| < g(z).

Now, increasing the numerator of f(x) and decreasing its denominator gives a larger
fraction, so we take:
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The comparison integral converges: fooo 5e 72 dr = lim, o0 (—%e_%) ‘zzg = %; hence

the original integral also converges:
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By contrast, to prove divergence of a fractional f(z), we would bound f(z) > g(x),
above a floor function g(z) with smaller numerator and larger denominator, and

[ g(z)dx = cc.



Limit Comparison Testor Ratio Comparison Test: For functions f(x), g(x) with li_>m % =
xr oo

L # 0, the improper integral [ f(x) dx converges if and only if [ g(z) dz converges.

In the case that g(x) > 0, this is simply because, given lim, oo % = L, we can

take z large enough so that %Lg(:r) < f(z) < %Lg(m), and we can apply the Direct
Comparison Test.
To apply this Test to faoo f(z) dzx for a fraction f(x) = gg;, we generally choose

the comparison function g(x) = g;gg

likewise with go(x) and fa(x). For example, for:

where gi(x) is the largest term in fi(x), and

22 — 7% +sin(x) x?
z) = take r) = = =212,
e - o) = o=
and we easily see lim,_, % = 1 (see §6.8). We previously showed faoo V2 dg

diverges, so the original integral faoo f(x) dx also diverges.



