
Math 133 L’Hôpital’s Rule Stewart §6.8

This technique evaluates limits which approach indeterminate forms like 0
0 and ∞∞ .

Theorem: For functions f(x), g(x), suppose f ′(x), g′(x) exist and g′(x) 6= 0,
on some interval x ∈ (a−δ, a+δ). Suppose that either:

lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a
|f(x)| = lim

x→a
|g(x)| =∞.

Then:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the right side limit exists, or equals ∞ or −∞.

This also holds with x→ a replaced by a one-sided limit x→ a+ or x→ a−.

There is another version for limits as x becomes very large:

Theorem: Let f(x), g(x) be functions which are differentiable and g′(x) 6= 0,
on a semi-infinite interval x ∈ (c,∞). Suppose that either:

lim
x→∞

f(x) = lim
x→∞

g(x) = 0 or lim
x→∞

|f(x)| = lim
x→∞

|g(x)| =∞.

Then:

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
,

provided the right side limit exists, or equals ∞ or −∞.

This also holds with x→∞ replaced with x→ −∞.

Proof.∗ There is an easy and enlightening proof of the Theorem if we assume:

lim
x→a

f(x) = f(a) = 0, lim
x→a

g(x) = g(a) = 0,

lim
x→a

f ′(x) = f ′(a), lim
x→a

g′(x) = g′(a) 6= 0.

In this case:

lim
x→a

f ′(x)

g′(x)
=

f ′(a)

g′(a)
= lim

x→a

f(x)−f(a)
x−a

g(x)−g(a)
x−a

= lim
x→a

f(x)− f(a)

g(x)− g(a)
= lim

x→a

f(x)

g(x)
.

That is, the quotient on the left is approximately ∆f
∆g . But if f starts at f(a) = 0, then

the change in f(x) is just the value of f(x): that is, ∆f = f(x) − f(a) = f(x); and
similarly ∆g = g(x).
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∗A more complete proof. Assume only that limx→a f(x) = f(a) = 0, limx→a g(x) = g(a) = 0 and

limx→a f
′(x)/g′(x) exists, redefining f(a), g(a) if necessary. This means f ′(x), g′(x) are defined and

g′(x) 6= 0 near x = a. I claim that also g(x) 6= 0 near x = a. Otherwise, if we had g(x) = 0 arbitrarily
near x = a, the Mean Value Theorem (§3.2) would imply g′(c) = 0 for c ∈ (a, x) or (x, a), a contradiction.

The Cauchy Mean Value Theorem (§3.2 end) says if f(x), g(x) are continuous on [a, b] and differentiable

on (a, b), then there is c ∈ (a, b) with f(b)−f(a)
g(b)−g(a)

= f ′(c)
g′(c) , provided denominators are non-zero. Apply this

to a sufficiently small interval [a, x] or [x, a] getting cx ∈ (a, x) or (x, a) with f(x)/g(x) = f ′(cx)/g′(cx).
Now, as x → a, also cx → a, and f(x)/g(x) = f ′(cx)/g′(cx) approaches the same value as f ′(x)/g′(x).



example: limx→2
x−2
x2−4

. The top and bottom both approach zero, so the limit ap-

proaches the indeterminate form 0
0 , and L’Hôpital’s Rule applies.

lim
x→2

x− 2

x2 − 4

Hôp
= lim

x→2

(x− 2)′

(x2 − 4)′
= lim

x→2

1

2x
=

1

4
.

In this simple case, we can also find the limit by cancelling vanishing factors in the
numerator and denominator:

lim
x→2

x− 2

x2 − 4
= lim

x→2

x− 2

(x− 2)(x+ 2)
= lim

x→2

1

x+ 2
=

1

4
.

Similar reasoning would apply to the ∞∞ form lim
x→∞

x−2
x2−4

Hôp
= lim

x→∞
1

2x = 0.

example: limx→0
ex−1−x

x2 . This approaches 0
0 , so L’Hôpital applies.

lim
x→0

ex − 1− x
x2

Hôp
= lim

x→0

ex − 0− 1

2x
.

This still approaches 0
0 , so we can use L’Hôpital again:

lim
x→0

ex − 0− 1

2x

Hôp
= lim

x→0

ex

2
=

e0

2
=

1

2
.

example: limx→0+ x ln(x). (Here we use a one-sided limit x → 0+ because ln(x) is
undefined for x < 0.) This approaches the indeterminate form 0 · (−∞), so it is a
difficult limit, but we must manipulate it into a quotient to apply L’Hôpital:

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

1/x

Now top and bottom become infinite approaching −∞∞ , so L’Hôpital applies.

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

1/x

Hôp
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0 .

example: limx→0 x
x. This approaches the indeterminate form 00, but we can once

again manipulate it into a limit we can handle:

lim
x→0

xx = lim
x→0

eln(x)x = lim
x→0

exp(x ln(x)) = exp
(

lim
x→0

x ln(x)
)
.

We can move the limit inside exp( ) because it is a continuous function (see §1.8 Com-
position Law). Applying the previous example, the limit becomes exp(0) = 1.

example: limx→0
sin(x)
ex . The bottom does not approach 0, so this is not indeterminate

at all, and L’Hôpital does not apply here. Instead, this is an easy limit that can be
evaluated by continuity (plugging in):

lim
x→0

sin(x)

ex
=

sin(0)

e0
=

0

1
= 0.

If we incorrectly try to apply L’Hôpital when it is not valid, we get a wrong answer:

lim
x→0

sin(x)

ex
??

Hôp
= ?? lim

x→0

cos(x)

ex
=

cos(0)

e0
= 1 (WRONG).



example: limx→∞
ex

xn for any integer n > 0. Here top and bottom go to∞ as x becomes
very large, so the limit approaches ∞∞ and l’Hôpital applies; in fact it applies n times:

lim
x→∞

ex

xn

Hôp
= lim

x→∞
ex

nxn−1

Hôp
= lim

x→∞
ex

n(n−1)xn−2

Hôp
= · · · Hôp

= lim
x→∞

ex

n!x0 = ∞ ,

since the top goes to ∞ and the bottom is the constant n! = n(n−1)(n−2) · · · (3)(2)(1).
Another method: f(z) = zn is a continuous function, so we can pull it out of the limit.

lim
x→∞

ex

xn
=

(
lim
x→∞

ex/n

x

)n
Hôp
=

(
lim
x→∞

1
ne

x/n

1

)n

= (∞)n =∞.

This result means that the exponential growth on the top is much faster than the poly-
nomial growth on the bottom, so the quotient gets larger and larger along with x.

example: limh→0+ h
be1/ha

for any a, b > 0, of the form 0 · ∞. We need to simplify
before L’Hôpital is any use. We substitute x = 1/ha, h = 1

x1/a , so x → ∞ as h → 0+.
Then we pull out the power of x as in the previous example:

lim
h→0

hbe1/ha
= lim

x→∞

ex

xb/a
=

(
lim
x→∞

e(a/b)x

x

)b/a
Hôp
= ∞b/a = ∞.

example: Another ∞∞ form:

lim
x→∞

x3 + x2 + x+ 1

x2 − x+ 1

Hôp
= lim

x→∞

3x2 + 2x+ 1

2x− 1

Hôp
= lim

x→∞

6x+ 2

2
= ∞

This means that the x3 growth on top is much faster than the x2 growth on the bottom.
We can see this without L’Hôpital if we divide top and bottom by the smaller leading
term, namely x2:

lim
x→∞

1
x2 (x3 + x2 + x+ 1)

1
x2 (x2 − x+ 1)

= lim
x→∞

x+ 1 + 1
x + 1

x2

1− 1
x + 1

x2

.

The top approaches x+ 1 and the bottom approaches 1, so the quotient approaches ∞.

example: lim
x→∞

ln(x)−x, of indeterminate form∞−∞. We can wrangle up a quotient:

lim
x→∞

ln(x)− x =
(

lim
x→∞

x
)((

lim
x→∞

ln(x)
x

)
− 1
)

Since lim
x→∞

ln(x)
x

Hôp
= lim

x→∞
1
x = 0, the above becomes ∞ · (0− 1) = −∞.

Alternatively, lim
x→∞

ln(x)− x = ln
(

lim
x→∞

x
ex

)
Hôp
= ln

(
lim
x→∞

e−x
)

= ln(0+) = −∞.



example: lim
x→∞

(x+1)p − xp for p > 0, a tough ∞−∞ form. To create a quotient, we

substitute u = 1
x → 0+ in place of x→∞.

L = lim
x→∞

(x+1)p−xp = lim
u→0+

( 1
u+1)p−( 1

u)p = lim
u→0+

(1+u)p−1
up =

(
lim

u→0+

((1+u)p−1)1/p

u

)p
Hôp
=

(
lim

u→0+
1
p((1+u)p − 1)

1
p
−1 · p(1+u)p−1

)p
=

(
lim

u→0+
((1+u)p − 1)1−p

)
·
(

lim
u→0+

(1+u)p−1

)p
The second factor approaches 1, so the original limit is equal to the first factor, of the
form (0+)1−p. This approaches L = 0 if p < 1; L = 1 if p = 1; and L =∞ if p > 1.

example: lim
x→a

√
f(x)−f(a)

f ′(x) , where f(x) has a non-degenerate minimum point, meaning

f ′(a) = 0 but f ′′(a) > 0 (concave up). Applying L’Hôpital to this 0
0 limit:

L = lim
x→a

√
f(x)− f(a)

f ′(x)

Hôp
= lim

x→a

f ′(x)

2
√

f(x)−f(a)

f ′′(x)
=

1

2f ′′(a)
lim
x→a

f ′(x)√
f(x)− f(a)

=
1

2f ′′(a)
· 1
L
.

Solving for L gives L =
1√

2f ′′(a)
. A simpler method is to pull out the radical:

lim
x→a

√
f(x)− f(a)

f ′(x)
=

√
lim
x→a

f(x)− f(a)

(f ′(x))2

Hôp
=

√
lim
x→a

f ′(x)

2f ′(x)f ′′(x)
=

1√
2f ′′(a)

.

Review Problem. Graph the function f(x) = x1/x for x ≥ 0. First, the horizontal asymptote
is limx→∞ f(x) of indeterminate form ∞1/∞ = ∞0. By the Natural Base Principle (§6.4),

x1/x = (eln(x))1/x = exp( ln(x)
x ), so:

lim
x→∞

x1/x = lim
x→∞

exp( ln(x)
x ) = exp

(
lim
x→∞

ln(x)
x

)
.

By L’Hopital lim
x→∞

ln(x)
x = lim

x→∞
1/x
1 = 0, and the horizontal asymptote is y = exp(0) = 1.

On the other end, f(0) is undefined but approaches limx→0+ x
1/x = exp(limx→0+

ln(x)
x ).

The inside limit is not indeterminate, rather −∞0+ = −∞ : large divided by tiny is very large.
(Applying L’Hopital would give a wrong answer!) Thus set f(0) = limx→0 f(x) = e−∞ = 0.

The critical (max/min) points are where f ′(x) = 0. Using logarithmic differentiation on
ln f(x) = ln(x1/x) = (1/x) ln(x) = ln(x)/x, we get:

f ′(x) = f(x) (ln f(x))′ = f(x) ( ln(x)
x )′ = x

1
x

1
xx− ln(x)(1)

x2
= x

1
x−2(1− ln(x)) = 0.

The first factor, being an exponential, can never be zero. The second factor gives 1− ln(x) = 0,
or x = e1 = e, unique critical point; max pt since f ′(x) > 0 for x < e, and f ′(x) < 0 for x > e.

challenges: Show f ′(0) = 0, (f−1)′(
√

2) = 4√
2(1−ln(2)) . Solve nm = mn over whole numbers.

Approximate inflection points by Newton’s Method: f ′′(x) = 0 at x ≈ 0.58193 & 4.36777 .

Review problem: Graph y = xne−x
2

for each n ≥ 1 (moment functions of the Gaussian).


