Method for Convergence Testing **Math 133** Stewart §11.7

For a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, determine if it converges toward a limit as we add more terms, or diverges (either to $\pm \infty$ or oscillating).

- 0. If $\lim_{n\to\infty} a_n \neq 0$, then the series diverges by the *n*-th Term Test (Vanishing Test).
- 1. Try to manipulate the series into a Standard Series:
 - Geometric series: $\sum_{n=1}^{\infty} cr^{n-1} = c + cr + cr^2 + cr^3 + \dots = \begin{cases} \frac{c}{1-r} & \text{for } |r| < 1\\ \text{diverges} & \text{for } |r| \ge 1. \end{cases}$
 - Standard *p*-series: $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots = \begin{cases} \text{converges} & \text{for } p > 1 \\ \text{diverges} & \text{for } p \leq 1. \end{cases}$
- 2. If a_n is a fraction, estimate with a simpler fraction b_n , often a standard series, by taking only the *largest* term from the numerator and denominator of a_n . Convergence of $\sum a_n$ is usually same as convergence of $\sum b_n$. Justify with a Test:
 - Direct Comparison Test (positive a_n)
 - Ceiling $0 \le a_n \le c_n$ where $\sum c_n$ converges $\implies \sum a_n$ also converges.
 - Floor $0 \le d_n \le a_n$ where $\sum d_n$ diverges $\implies \sum a_n$ also diverges.

The ceiling c_n or floor d_n will usually be closely related to the estimate b_n .

- Limit Comparison Test: Determine $L = \lim_{n \to \infty} a_n / b_n$. $|L| < \infty$ and $\sum b_n$ converges $\implies \sum a_n$ also converges.
 - $\circ |L| > 0$ and $\sum b_n$ diverges $\implies \sum a_n$ also diverges.
 - [Compare with $(L-\epsilon)b_n < a_n < (L+\epsilon)b_n$ for n > N].*
- 3. Try the Integral Test if a_n is positive and fairly simple, but not comparable to a standard series: e.g. $\frac{1}{n \ln(n)}$. For a positive decreasing function f(x) with $a_n = f(n)$, compute improper integral $\int_1^{\infty} f(x) dx = \lim_{N \to \infty} \int_1^N f(x) dx = \lim_{N \to \infty} F(N) - F(1)$.
 - $\circ \int_{1}^{\infty} f(x) dx \text{ converges } \Longrightarrow \sum a_{n} \text{ also converges } [\sum_{n=1}^{\infty} a_{n} \leq a_{1} + \int_{1}^{\infty} f(x) dx].$ $\circ \int_{1}^{\infty} f(x) dx \text{ diverges } \Longrightarrow \sum a_{n} \text{ also diverges } [\sum_{n=1}^{\infty} a_{n} \geq \int_{1}^{\infty} f(x) dx].$
- 4. Try the Ratio Test if a_n has a growing number of factors, for example if it contains r^n or n!. Determine $\lim_{n\to\infty} |a_{n+1}/a_n| = L$.
 - $\circ L < 1 \implies \sum a_n \text{ converges } [|a_n| \le c(L+\epsilon)^n \text{ for } n > N].$
 - $\circ L > 1 \implies \sum a_n \text{ diverges } [|a_n| \ge c(L \epsilon)^n \text{ for } n > N].$
 - $\circ L = 1 \implies$ no conclusion. [e.g. any standard p-series]
- 5. If $\sum a_n$ has positive and negative terms, try:
 - Absolute Convergence: $\sum |a_n|$ converges $\implies \sum a_n$ also converges.
 - Alternating Series: $a_n = (-1)^{n-1}b_n$ with $b_n \ge 0$: $\lim_{n \to \infty} b_n = 0, \ b_n \text{ decreasing } \Longrightarrow \sum a_n \text{ converges.}$

Error estimate: $\sum_{n=1}^{2N} a_n \le \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{2N} a_n + b_{2N+1}$.

Notes by Peter Magyar magyar@math.msu.edu

^{*}Most later tests are proved by reducing to a Direct Comparison, specified in [brackets]