Math 133 Ratio Test Stewart §11.6/1

We have one more important test for convergence of an infinite series » >~ ; a,. This
test does not require us to choose a comparison series: instead, we test the ratio of each
term a, compared to the next term a,;.
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o If L <1, then ) °, a, converges.
e If L >1, then Y >, a, diverges.

e If L =1, then this test fails to determine convergence.

Ratio Test: Suppose lim =1L.
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Proof: Assuming a, > 0, the limit lim
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€ > 0, we can take a starting point N so that for all n > N, we have:

‘ = L means that, for any small number
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an(L—€) < apt1 < ap(L+e).
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Iterating this inequality gives: ¢1(L—¢)" < a, < ca(L+€)™ for some constants cy, ca.*

If L < 1, we take ¢ small enough that L+e < 1, and we compare Y a, to the
convergent ceiling series > ca(L+€)™. If L > 1, we take € small enough that L—e > 1,
and we compare Y a, to the divergent floor series Y co(L—e)™. If L =1, adding any e
produces a divergent ceiling, and subtracting any € produces a convergent floor, neither
of which would constrain the original series. Finally, for the general case where the a,,’s
may be positive or negative, the above argument shows > |a,| converges, which implies
> ay converges by §11.6 Part II. Q.E.D.

The Ratio Test is most useful when a, is a product of a growing number of factors,
which will mostly cancel out in “2*.
EXAMPLE: Determine the convergence of Z on
n=1
We did this one in §11.4 by finding a tricky comparison series. The Ratio Test
2
naturally applies here, because a, = % = (n)(n)(3)--- (1) has more and more factors
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as n gets larger. We have:
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Since L = % < 1, the Test shows Y a,, converges.
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EXAMPLE: Determine the convergence of Z(—l)"x—', where z is a given number and
n!
n=1
we use the factorial notation n! = (n)(n—1)(n—2)---(2)(1). Again, the terms have a

large number of factors, so we use the Ratio Test:
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Since L = 0 < 1, the Test shows ) a, converges.
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*Specifically: an < an_1(L+€) < an_o(L+€)> <--- < an(L+e)" N = ﬁ(L—&—e)".



