Math 133 Sequences Stewart §11.1

Real functions and sequences. So far, our main objects of study have been
functions f : R — R, where the inputs and outputs are in the set of real numbers
R = (—00, 00). In this chapter, we introduce a new type of function called a sequence:

a:{1,2,3,...} >R,

in which the inputs are whole numbers n = 1,2, 3,..., and the outputs are again real

numbers, usually written as a,, instead of a(n). The index n can be replaced arbitrarily:

a; for i =1,2,3,... is the same sequence as a,. Some sequences may begin with ag.
We can write a sequence either as a formula or as a list of outputs; for example:

an:% — {an}ye, = %,%,i,...
Here {a,}22, denotes the entire sequence thought of as an infinite list, and we write
the first few values a1 = 1, ag = 1, as = , with dot-dot-dot (...) meaning “continue
this pattern”. We can picture this by plotting the points (1, a, ) in the plane, sometimes
with a bar-graph as at left; or by marking only the output values ai,as,as,... on a

number line as at right:
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| 1 for n odd

= a,=(-1)""1

o {a,}=1,-1,1,—-1,... <= a":{—l for 1 oven

0 for n even
° a, = sin(%) — a, = 1 for n = 4k + 1 with integer k
—1 for n = 4k + 3 with integer k
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© a,=2" <= {a,}=2,4,816,... <= a1 =2, ap=2a,_1 forn>2

The last definition is recursive, meaning that each value a,, is defined in terms of
the previous value a,_1, starting with an initial value a1 = 2,
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e The Fibonacci sequence is the most famous recursive sequence: each entry is the
sum of the previous two.

Fh=F=1, F,=F, 1+ F, o forn>3.

n||1|2{3{4|5|/6|7]|8
F,l1(11]2]3]5]|8(|13|21

There is no obvious formula for F,, in terms of n, but look up Binet’s formula.

Convergence. It would be meaningless to take the limit of a sequence a,, as n — c,
since a whole number n cannot gradually approach a finite value ¢. However, we can
take the limit as n — oo.

Definition: We say the sequence {a,}>2 converges to the number L, de-
noted lim, o a, = L, whenever a,, gets as close as desired to L, provided
n is large enough. Specifically, for any error tolerance € > 0, there is some
lower bound N such that n > N forces L — e < a,, < L+ €; or equivalently:

n>N = |a,—L|<e.
If the limit does not exist, we say the sequence diverges.

This just repeats the error-control definition for lim, .~ f(z) = L from §1.7, and we
have a similar definition for divergence to infinity, lim, ., @, = 0o or —oo. In the
pictures above, we can see the convergence of a,, = % to L = 0: in the graph, we see
the points (n,a,) approach the horizontal asymptote y = L; on the number line, we
see the a,, points march right up to the limit value L.

EXAMPLE: Prove that: lim, o2 + (_213" = 2. Given the acceptable error tolerance

€ > 0, we work backward from the desired inequality:

(-1)" (-1)"
<24€ <— —€<
2n 2n

2—e< 2+

For example, if we want |a, — 2| < € = ﬁ, we take n > i = 2/% = 50.

Limit Laws. We do not usually perform error-control analysis to work with limits of
sequences a,, but rather rely on our previous knowledge of limits of functions f(x):

Sequence Comparison Theorem: If f(x) is a function with a,, = f(n) for all
n, then lim a, = lim f(x), when the right-hand limit exists or is +oo.
n—oo T—r00

n?+n

. 2 .
EXAMPLE: Compute lim,, o % Here a, = 557 forn =1,2,3, ... is the sequence
. 2 . e e
version of f(z) = 2”51;1% for real numbers x, and we have techniques to deal with limits

of f(z). Here, we can use L’Hopital’s Rule:

n? +n . x? +Z Hop .. 2¢ +1 Hop . 2 1
— = lim = lim = lim - = —.
n—oo 2n2 — 3 z—o00 212 — 3 z—oo 4dx x—00 4 2




We cannot use L’Hopital’s Rule directly on a,, because we cannot take the derivative
of a sequence: it is not a curve with a slope at each point.

An alternative way of handling limits of sequences is to repeat the kind of analysis
we did with functions: combine Basic Limits using Limit Laws (§1.6). We have:

e Basic Limits: lim ¢=¢ and lim n = oco.
n—oo n—oo

e Sum Law: lim a, + b, = lim a, + lim b, .
n—oo n—oo n—oo

e Product Law: lim a,b, = lim a, - lim b, .

n—o00 n—00 n—00
a lim a,
. . n n—0o0
o Quotient Law: lim — = — .
n—00 bn lim bn
n—oo

The above Laws are valid provided the right-side expressions make sense: for example,
in the Quotient Law we must assume that a, and b, converge, and lim b, # 0. Fur-
n—oo

thermore, the Laws are valid when the right-side limits are infinite, provided we use

the Infinity Rules:

oo ife>0 1
00 +00 = 0 0000 = 00 c-00 = . — =0.
-0 ife<0 +oo

EXAMPLE: We can re-do the sequence in the previous example as follows:

n?+n . n’+n # .1+ %
im ——— = lim ——— - 2% = lim
n—oo 2n2 — 3 n—oo 2n2 — 3 % n—>c><>2—i2
n n
Applying the Limit Laws and Infinity Rules, this becomes:
|
1+ lim 5 1+L 140 1

2 = 2 T~ 9_3(02) 92
2—3(lim %) 2-3(L) 27800 2
n—oo
Limit Theorems. We have two more results which parallel those for limits of f(z):

Squeeze Theorem: If a,, < b, < ¢, for all n, and lim a, = lim ¢, = L,
n—oo n—o0

then lim b, = L.
n—oo
: 2
EXAMPLE: Rigorously evaluate the limit of b, = ZEsin() - Note that the sequence
¢n = sin(n?) diverges, oscillating unpredictably between —1 < sin(n?) < 1. However,
we have bounds:

= cp.

— i 2
0 = 1 2-1 < 2 + sin(n?) < 2+1 3
n n n n n

Since the upper and lower bounds both approach the limit L = 0, so does the middle

. 2+4sin(n?
sequence: lim 27 _
n—oo



Continuity Theorem: If g(z) is continuous, i.e. lim g(z) = g(c) for all ¢,
Tr—cC
then:

lim g(a,) = g( lim an>.
n—o0 n—o0

EXAMPLE: Find lim n!/™: that is, does the sequence 1,v/2, ¥/3, V4, ... approach a

n—oo
finite value? As always with exponentiation, we rewrite in terms of the natural expo-

nential exp(z) = e*, which is a continuous function:

lim o'/ = lim e2/7 = lim exp<1n(n)> _ eXp(lim ln(n)>.
n

n—00 n—00 n—o0
Now we can evaluate the inside limit by L'Hépital:

| 1
lim n(n) lim n(z) = lim
n—oo n r—00 I T—00

Uz

= 0.

Hence lim n!/™

= €0 = 1. Check this by computing values of n!/™ on your calculator.
n—oo

Continuous compounding. Here is a surprising example from financial theory.
Suppose a bank account pays an annual interest rate of r: for example, r = 0.04 = 4%
means that after a year, each dollar becomes 1 + r = 1.04 dollars.

Now suppose half the interest is paid after half a year, giving 1 + § dollars, and in
the second half-year, the previous interest also earns interest (i.e. compound interest).
At the end of the year, each dollar becomes (1 + 5)(1+ %) = (1 + §)? dollars. If the
interest is paid three times a year, compound interest gives (1 + %)3 dollars; and if
interest is paid n times a year, it gives (14 )" dollars.

Now imagine if interest were paid every hour, or every second, etc., approach-
ing a system of compounding continuously at every instant. Would this produce an
unbounded amount of money, or tend to a limit? Let’s see!

(1 + Z)n = exp <ln<1 + f) n)
n n
Now L’Hopital gives:

In(1 -1 % *T‘CL‘_Q
lim 1n(1—{— Z) r = lim M Hop lim 1trz T ( )
X

T—00 T—00 x_l T—00 —1‘_2
) re Hop , T
= lim = lim - = r.
T—=o0 L + 1 z—o0 1

Therefore:

AR
lim <1—|——) = exp(r) = €.
n

n—0o0

Thus, an interest rate of  produces an annual yield of €” under continuous compound-
ing. No intervals of compounding will produce more than this. Once again, the natural
exponential intrudes even though the original question had nothing to do with it.



