
Math 133 Sequences Stewart §11.1

Real functions and sequences. So far, our main objects of study have been
functions f : R → R, where the inputs and outputs are in the set of real numbers
R = (−∞,∞). In this chapter, we introduce a new type of function called a sequence:

a : {1, 2, 3, . . .} → R ,

in which the inputs are whole numbers n = 1, 2, 3, . . ., and the outputs are again real
numbers, usually written as an instead of a(n). The index n can be replaced arbitrarily:
ai for i = 1, 2, 3, . . . is the same sequence as an. Some sequences may begin with a0.

We can write a sequence either as a formula or as a list of outputs; for example:

an = 1
n ⇐⇒ {an}∞n=1 = 1, 12 ,

1
3 ,

1
4 , . . .

Here {an}∞n=1 denotes the entire sequence, thought of as an infinite list, and we write
the first few values a1 = 1, a2 = 1

2 , a3 = 1
3 , with dot-dot-dot (. . .) meaning “continue

this pattern”. We can picture this by plotting the points (n, an) in the plane, sometimes
with a bar-graph as at left; or by marking only the output values a1, a2, a3, . . . on a
number line as at right:

examples:

• {an} = 1,−1, 1,−1, . . . ⇐⇒ an =

{
1 for n odd
−1 for n even

⇐⇒ an = (−1)n−1

• an = sin
(
nπ
2

)
⇐⇒ an =


0 for n even
1 for n = 4k + 1 with integer k
−1 for n = 4k + 3 with integer k

⇐⇒
n 1 2 3 4 5 6 7 8 · · ·
an 1 0 −1 0 1 0 −1 0 · · ·

• an = 2n ⇐⇒ {an} = 2, 4, 8, 16, . . . ⇐⇒ a1 = 2, an = 2an−1 for n ≥ 2

The last definition is recursive, meaning that each value an is defined in terms of
the previous value an−1, starting with an initial value a1 = 2,
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• The Fibonacci sequence is the most famous recursive sequence: each entry is the
sum of the previous two.

F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.

n 1 2 3 4 5 6 7 8 · · ·
Fn 1 1 2 3 5 8 13 21 · · ·

There is no obvious formula for Fn in terms of n, but look up Binet’s formula.

Convergence. It would be meaningless to take the limit of a sequence an as n → c,
since a whole number n cannot gradually approach a finite value c. However, we can
take the limit as n→∞.

Definition: We say the sequence {an}∞n=1 converges to the number L, de-
noted limn→∞ an = L, whenever an gets as close as desired to L, provided
n is large enough. Specifically, for any error tolerance ε > 0, there is some
lower bound N such that n > N forces L− ε < an < L+ ε; or equivalently:

n > N =⇒ |an − L| < ε .

If the limit does not exist, we say the sequence diverges.

This just repeats the error-control definition for limx→∞ f(x) = L from §1.7, and we
have a similar definition for divergence to infinity, limn→∞ an = ∞ or −∞. In the
pictures above, we can see the convergence of an = 1

n to L = 0: in the graph, we see
the points (n, an) approach the horizontal asymptote y = L; on the number line, we
see the an points march right up to the limit value L.

example: Prove that: limn→∞ 2 + (−1)n
2n = 2. Given the acceptable error tolerance

ε > 0, we work backward from the desired inequality:

2− ε < 2 +
(−1)n

2n
< 2 + ε ⇐⇒ −ε < (−1)n

2n
< ε ⇐⇒

∣∣∣∣(−1)n

2n

∣∣∣∣ < ε ⇐⇒ n >
1

2ε

For example, if we want |an − 2| < ε = 1
100 , we take n > 1

2ε = 1
2/100 = 50.

Limit Laws. We do not usually perform error-control analysis to work with limits of
sequences an, but rather rely on our previous knowledge of limits of functions f(x):

Sequence Comparison Theorem: If f(x) is a function with an = f(n) for all
n, then lim

n→∞
an = lim

x→∞
f(x), when the right-hand limit exists or is ±∞.

example: Compute limn→∞
n2+n
2n2−3 . Here an = n2+n

2n2−3 for n = 1, 2, 3, . . . is the sequence

version of f(x) = x2+x
2x2−3 for real numbers x, and we have techniques to deal with limits

of f(x). Here, we can use L’Hôpital’s Rule:

lim
n→∞

n2 + n

2n2 − 3
= lim

x→∞

x2 + x

2x2 − 3

Hop
= lim

x→∞

2x+ 1

4x

Hop
= lim

x→∞

2

4
=

1

2
.



We cannot use L’Hôpital’s Rule directly on an because we cannot take the derivative
of a sequence: it is not a curve with a slope at each point.

An alternative way of handling limits of sequences is to repeat the kind of analysis
we did with functions: combine Basic Limits using Limit Laws (§1.6). We have:

• Basic Limits: lim
n→∞

c = c and lim
n→∞

n =∞.

• Sum Law: lim
n→∞

an + bn = lim
n→∞

an + lim
n→∞

bn .

• Product Law: lim
n→∞

anbn = lim
n→∞

an · lim
n→∞

bn .

• Quotient Law: lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
.

The above Laws are valid provided the right-side expressions make sense: for example,
in the Quotient Law we must assume that an and bn converge, and lim

n→∞
bn 6= 0. Fur-

thermore, the Laws are valid when the right-side limits are infinite, provided we use
the Infinity Rules:

∞+∞ =∞ ∞·∞ =∞ c ·∞ =

{
∞ if c > 0
−∞ if c < 0

1

±∞
= 0 .

example: We can re-do the sequence in the previous example as follows:

lim
n→∞

n2 + n

2n2 − 3
= lim

n→∞

n2 + n

2n2 − 3
·

1
n2

1
n2

= lim
n→∞

1 + 1
n

2− 3
n2

Applying the Limit Laws and Infinity Rules, this becomes:

1 + lim
n→∞

1
n

2− 3
(

lim
n→∞

1
n

)2 =
1 + 1

∞

2− 3
(

1
∞
)2 =

1 + 0

2− 3(02)
=

1

2
.

Limit Theorems. We have two more results which parallel those for limits of f(x):

Squeeze Theorem: If an ≤ bn ≤ cn for all n, and lim
n→∞

an = lim
n→∞

cn = L,

then lim
n→∞

bn = L.

example: Rigorously evaluate the limit of bn = 2+sin(n2)
n . Note that the sequence

qn = sin(n2) diverges, oscillating unpredictably between −1 ≤ sin(n2) ≤ 1. However,
we have bounds:

an =
1

n
=

2− 1

n
≤ 2 + sin(n2)

n
≤ 2 + 1

n
=

3

n
= cn .

Since the upper and lower bounds both approach the limit L = 0, so does the middle

sequence: lim
n→∞

2+sin(n2)
n = 0.



Continuity Theorem: If g(x) is continuous, i.e. lim
x→c

g(x) = g(c) for all c,

then:
lim
n→∞

g(an) = g
(

lim
n→∞

an

)
.

example: Find lim
n→∞

n1/n: that is, does the sequence 1,
√

2, 3
√

3, 4
√

4, . . . approach a

finite value? As always with exponentiation, we rewrite in terms of the natural expo-
nential exp(x) = ex, which is a continuous function:

lim
n→∞

n1/n = lim
n→∞

eln(n)/n = lim
n→∞

exp

(
ln(n)

n

)
= exp

(
lim
n→∞

ln(n)

n

)
.

Now we can evaluate the inside limit by L’Hôpital:

lim
n→∞

ln(n)

n
= lim

x→∞

ln(x)

x
= lim

x→∞

1/x

1
= 0.

Hence lim
n→∞

n1/n = e0 = 1. Check this by computing values of n1/n on your calculator.

Continuous compounding. Here is a surprising example from financial theory.
Suppose a bank account pays an annual interest rate of r: for example, r = 0.04 = 4%
means that after a year, each dollar becomes 1 + r = 1.04 dollars.

Now suppose half the interest is paid after half a year, giving 1 + r
2 dollars, and in

the second half-year, the previous interest also earns interest (i.e. compound interest).
At the end of the year, each dollar becomes (1 + r

2)(1 + r
2) = (1 + r

2)2 dollars. If the
interest is paid three times a year, compound interest gives (1 + r

3)3 dollars; and if
interest is paid n times a year, it gives (1 + r

n)n dollars.
Now imagine if interest were paid every hour, or every second, etc., approach-

ing a system of compounding continuously at every instant. Would this produce an
unbounded amount of money, or tend to a limit? Let’s see!(

1 +
r

n

)n
= exp

(
ln
(

1 +
r

n

)
n
)

Now L’Hôpital gives:

lim
x→∞

ln
(

1 +
r

x

)
x = lim

x→∞

ln
(
1 + rx−1

)
x−1

Hop
= lim

x→∞

1
1+rx−1 (−rx−2)

−x−2

= lim
x→∞

rx

x+ r

Hop
= lim

x→∞

r

1
= r .

Therefore:
lim
n→∞

(
1 +

r

n

)n
= exp(r) = er .

Thus, an interest rate of r produces an annual yield of er under continuous compound-
ing. No intervals of compounding will produce more than this. Once again, the natural
exponential intrudes even though the original question had nothing to do with it.


