Math 133 Polar Areas and Lengths Stewart §10.4

Slope in polar coordinates. We have seen that round, turny shapes are more simply
described by polar r8-equations than by rectangular xy-equations. In this section, we use
polar equations to compute geometric information.

Thus, we consider a polar curve r = f(6) over 6 € [a,b]. We split the interval 6 € [a, b]
into a large number n of increments, each of length Af = b;“, with sample points 64, ...,80,.
Here is a typical increment of the curve over 6 € [6;,0;41], showing the corresponding

increments in the coordinates:
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Our first problem is to find the slope of this curve at a given 6. It is not the derivative
1(0) = %, which is the rate of change of the radius with respect to the angle. Rather,
slope is the rate of change of y = r sin(f) = f(0) sin(f) with respect to z = r cos(d) =

f(0) cos(f). That is:

Sopeatd) — U _ B _ UO)sn(@) _ J0) sin(0) + £(0) cos(0)
dr = s T (f(0) cosB))  (0) cos(8) — (6) sin(6)

Area in polar coordinates. Assume r = f(0) > 0 for 6 € [a,b] to avoid complications
with signs, and consider the region inside the curve, defined by 0 < r < f(0) for 6 € [a, b].
Apply Slice Analysis (§5.2), splitting the area A into n thin wedges AA; over [6;,0;11]:
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We must compute the wedge area AA;. Since A6 is tiny, the small curve segments are very
close to straight lines, and AA; is a very thin triangle. Neglecting the small piece with
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radius larger that r;, the slice AA; is approximately an isosceles triangle with height r; and
base r;A8.* Thus:

AA; =~ 3(base)x(height) ~ 3(r;A0)r; = Lr?Af.

The total area is the sum of these pieces, which is clearly a Riemann sum for an integral:

b
_ _ 1,2 1 p(\2
= nlggo g AA; = hm E SUTACEES hm g $F(0:)°A0 = /a 5.f(0)" do

That is, the area inside a polar graph r = f(f) is given by an integral formula, but a
different integral from the area under a rectangular graph y = f(x).

Arclength in polar coordinates. Finally, we compute the length of the curve r = f(0)
for 0 € [a,b]. The length L is a sum of n increments AL;:
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Each increment AL; is approximately a straight line segment. Next to it is the radial
segment Ar and the tiny circular arc with length r; Af, which is also approximately a
straight line. We get an approximate right triangle with hypotentuse AL; and legs r; Af
and Ar, so the Pythagorean Theorem gives:

AL ~ /(rBOP+ (ArP = ([AICHA Ag = \[r2 4 (85)° A0,

Therefore the total arclength is:
— — A )2
= nhm E AL;, = nhm g \/7? (Rp)2 A0

= hmz\/f + (A2 N = /\/Tde

n—oo

We could also deduce this from our previous parametric arclength formula (§10.3) by ap-
plying it to (2(t), y(t)) = (f(t) cos(t), £(t) sin(t)).

*On a circle of radius r, and arc of 6 radians has length r6: this is the definition of radian measure.




Example: Area of intersections. Consider the polar curve r = f(f) = 1 — cos(6). We
picture the abstract function f by its rectangular graph in 6r parameter space (end §10.3):
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The polar graph is a cardioid (heart-shape), which we draw along with the circle r = %
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PROB: Find the area of the crescent-shaped region inside the cardioid & outside the circle.
We must first determine the intersection points of the two curves, where:

r=1-cos(§) =% = cos()=3 = 6=+%+2nm,

where n is any integer. Since the whole cardioid is traced by 6 € [0,27], we can take all

intersection points in this range: 6 = § and 0 = -3 + 27 = %” Now we take the area

inside the cardioid r = f(0) =1 — Cos(ﬁ) minus the area inside the circle r = g(f) = 3:

m/
A = /b %f(0)2 _ %9(0)2 df = /; 3%(1—005(6))2 _ %(%)2 do

0=57/3
0=m/3
To do the integral, expand (1 — cos(#))? and use cos?(f) = & + 3 cos(20) (see §7.2).

_ [%6—sin(¢9)+%sin(29)] — V34T &~ 4,

PROB: Find the highest point of the cardioid: y(t) = (1 — cos(t))sin(t) = max. From

§3.1, we need to solve 3/(t) = 0. Using the Product Rule and sin? = 1 — cos? we get:

' (t) = sin(t) sin(t) + (1 — cos(t)) cos(t) = —2cos?(t) + cos(t) + 1 = 0, and the Quadratic
2my = 3v3
= 3v3,

formula gives cos(t) = —1%, t = £27. The maximum is y(%



Review example: Exponential spiral. Consider a snail-shell spiral curve which doubles
in radius with each turn:

N

This is the polar graph r = f(0) = ca’ = ce® of a general exponential function (§6.4).

Assuming f(0) = 1, f(27) = 2, allows us to solve for ¢ = 1 and a = 2/?7 = £(2)/27 t0 get:

=202 — M for b= h;(:)

What is the length of this curve, from the point (r,6) = (1,0) all the way to the center,
that is, for 6 € (—o0,0]? We have /() = () = be, so the arclength formula gives:

I = /0 02+ f(0)2do = /0\/1+b2eb9d9 = [%\/H-ib?ebe}

O=—0

= L1402 - lim Lipe N = 144 & 9.2,
N—o0 n*(2)

Or we could use geometry to show that these infinitely many turns have finite length. Let
L; be the length of the first turn § € [—2m,0], and Ly the length of the second turn, etc.
The exponential spiral is scale invariant: each turn inward is the % dilation of the previous
turn, with half the length, so the total is a geomteric series > oo ; cr" ! = o (811.2):

1 1 1
L:L1+L2+L3+L4+"'=L1+§L1+27L1+2f3[/1+'”: = 2[4.

(1-3)

Harmonic Spiral. From the above, we may say that the inward spiral 7 = 1/2% has finite

arclength as § — oo because the geometric series > 7, 2% is convergent. Let us instead

model an inward spiral on the divergent harmonic series % = 00, namely r = % for 6 > 1.
Then this should have infinite arclength:

L= [+ (—g)?d) = lmémcw = VI g,

Since the integrand (in the second integral) is clearly positive and decreasing, the Integral
Test (§11.3) tells us that this diverges whenever the corresponding series diverges, namely :

Zf:l%m ~ Zfbo:l% = oo (divergent).

This can be justified by the Direct Comparison Test (§11.4), since %, / 1+# > L. or the

n?

Limit Comparison Test: the ratio ‘g—z = 1—&—# — 1, so they have the same divergence.



Alternatively, we can directly integrate, switching the variable to f V142 4z, Since we have
V1422 (§7.3), we try the trig substitution x = tan(t), vV 1+2? = sec( ), dx = sec(t) dt

v14a® 1 1 1
tan sin®(t) cos(t) sin®(t) cos?(t)
As in §7.2, we do the substitution u = sin(t), 1—u? = cos?(t), du = cos(t) dt

1—u?)

Here the result is a rational function, expanded by partial fracitions (§7.4). Then
1

_1—u2+u2 _ 1. 1 _1,c.D
w2(1—u?)  w2(1-u?)  w2(1—u?)  w?  (I—u)(l+uw) w2 1+u  1-u’

We can find the remaining coefficients by clearing denominators to get

1 =C(1-u) + D(1+u).

Substituting u = 1 gives D = % and u = —1 gives C' = % The integral becomes:

/1+5+é d L L n(14u) — Ln(1—u) L Ly (e
— + = 4+ = = —+:In —sln(l-u) = ——+=-In[ — ).

w2 1w T 1—a u 2 W3 “ 2 1-u

Now we need to restore the original variable x = tan(¢) from u = sin(¢). The standard
triangle for x = tan(¢) implies u = sin(t) = ﬁ After simplification, the final answer is:

V12 Q= _\/1—1—372 +11 (\/1—1—372—1—37)
2 T 2 '

N Al
Vitz? -z
Therefore the total arclength is:

< /1422 Vita?
L= / T gr = Jim ;1n<w> + K
1 €T T—00

B Vidz? —

for a constant K. In the fraction \/%mﬂ we cannot use L’Hopital’s Rule (§6.8), since the
numerator clearly approaches co, but the denominator does not. Substitute x = 1/z

o1 V2L - 1
lim V142 —2 = lim (/145 — = = lim Y222
T—00 z—07t Z z z—07F z

This is a 0 limit, so we can apply L’Hopital to get:

V2241 — 1Y =
lm VIte? - = Lm YEFLZDD o VEE e
T—00 2—0+ (Z)/ z—0t 1

After all that, we obtain the expected arclength:

L = 11n<0+)+K 3In(c0) + K = o0.



