Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem (§4.3), the easiest way to evaluate an integral \(\int_a^b f(x) \, dx \) is to find an antiderivative, the indefinite integral \(\int f(x) \, dx = F(x) + C \), so that \(\int_a^b f(x) \, dx = F(b) - F(a) \). Building on §3.9, we will find antiderivatives by reversing our methods of differentiation: here, we reverse the Chain Rule, \(F(g(x))' = F'(g(x)) \cdot g'(x) \).

For example, let us find the antiderivative:

\[
\int x \cos(x^2) \, dx.
\]

That is, for what function will the Derivative Rules produce \(x \cos(x^2) \)? We notice an inside function \(g(x) = x^2 \), and a factor \(x \) which is very close to the derivative \(g'(x) = 2x \). In fact, we can get the exact derivative of the inside function if we multiply the factors by \(\frac{1}{2} \) and 2:

\[
x \cos(x^2) = \frac{1}{2} \cos(x^2) \cdot (2x) = \frac{1}{2} \cos(x^2) \cdot (x^2)'.
\]

This is just the kind of derivative function produced by the Chain Rule:

\[
F(g(x))' = F'(g(x)) \cdot g'(x) = F'(x^2) \cdot (x^2)' = \frac{1}{2} \cos(x^2) \cdot (2x).
\]

We still need to find the outside function \(F \). To remind us of the original inside function, we write \(F(u) \), where the new variable \(u \) represents \(u = g(x) = x^2 \). We must get \(F'(u) = \frac{1}{2} \cos(u) \), an easy antiderivative:

\[
\int \frac{1}{2} \cos(u) \, du = F(u) + C = \frac{1}{2} \sin(u) + C.
\]

Now we restore the original inside function to get our final answer:

\[
\int \frac{1}{2} \cos(u) \, du = \frac{1}{2} \sin(u) + C = \frac{1}{2} \sin(x^2) + C.
\]

The Chain Rule in Leibnitz notation (§2.5) reverses and checks the above computation. Writing \(y = \frac{1}{2} \sin(u) \) and \(u = x^2 \):

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{d}{du} \left(\frac{1}{2} \sin(u) \right) \cdot \frac{d}{dx} (x^2)
\]

\[
= \frac{1}{2} \cos(u) \cdot (2x) = \frac{1}{2} \cos(x^2) \cdot (2x) = x \cos(x^2).
\]
Substitution Method

1. Given an antiderivative \(\int h(x) \, dx \), try to find an inside function \(g(x) \) such that \(g'(x) \) is a factor of the integrand:

\[
h(x) = f(g(x)) \cdot g'(x).
\]

This will often involve multiplying and dividing by a constant to get the exact derivative \(g'(x) \). After factoring out \(g'(x) \), sometimes the remaining factor needs to be manipulated to write it as a function of \(u = g(x) \).

2. Using the symbolic notation \(u = g(x) \), \(du = \frac{du}{dx} \, dx = g'(x) \, dx \), write:

\[
\int h(x) \, dx = \int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du,
\]

and find the antiderivative \(\int f(u) \, du = F(u) + C \) by whatever method.

3. Restore the original inside function:

\[
\int h(x) \, dx = \int f(u) \, du = F(u) + C = F(g(x)) + C.
\]

Examples

- \(\int (3x+4)\sqrt{3x+4} \, dx \). The inside function is clearly \(u = 3x+4 \), \(du = 3 \, dx \), so:

\[
\int (3x+4)\sqrt{3x+4} \, dx = \int \frac{1}{3}(3x+4)\sqrt{3x+4} \cdot 3 \, dx \\
= \int \frac{1}{3}u^{\frac{3}{2}} \, du = \frac{1}{6} \int u^{\frac{3}{2}} \, du = \frac{1}{6} \cdot \frac{2}{5}u^{\frac{5}{2}} + C = \frac{2}{15}(3x+4)^{\frac{5}{2}} + C.
\]

- \(\int x\sqrt{3x+4} \, dx \). Again \(u = 3x+4 \), so \(\sqrt{3x+4} \) becomes \(\sqrt{u} \), but we must still express the remaining factor \(x \) in terms of \(u \). We solve \(u = 3x+4 \) to obtain \(x = \frac{1}{3}u - \frac{4}{3} \); that is, \(x = \frac{1}{3}(3x+4) - \frac{4}{3} \):

\[
\int x\sqrt{3x+4} \, dx = \int \frac{1}{3}(\frac{1}{3}(3x+4)-\frac{4}{3})\sqrt{3x+4} \cdot 3 \, dx = \int \frac{1}{3}(\frac{1}{3}u-\frac{4}{3})\sqrt{u} \, du \\
= \int \frac{1}{9}u^{\frac{3}{2}} - \frac{4}{9}u^{\frac{1}{2}} \, du = \frac{1}{9} \cdot \frac{2}{5}u^{\frac{5}{2}} - \frac{4}{9} \cdot \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{15}(3x+4)^{\frac{5}{2}} - \frac{8}{27}(3x+4)^{\frac{3}{2}} + C.
\]

- \(\int \sec^2(\sqrt{x}) \, \sqrt{x} \) \, dx \). We take \(u = \sqrt{x} = x^{1/2} \), \(du = \frac{1}{2}x^{-1/2} \, dx = \frac{1}{2\sqrt{x}} \, dx \):

\[
\int \sec^2(\sqrt{x}) \, \sqrt{x} \, dx = \int 2\sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \, dx \\
= \int \sec^2(u) \, du = \tan(u) + C = \tan(\sqrt{x}) + C.
\]

Here we use the trig integrals from §3.9.
• $\int \frac{\sin(x)}{(1 + \cos(x))^2} \, dx$. We cannot take the inside function $u = \sin(x)$, because its derivative $\cos(x)$ is not a factor of the integrand. We could take $u = \cos(x)$, but the best choice is $u = 1 + \cos(x)$, $du = -\sin(x) \, dx$:

$$\int \frac{\sin(x)}{(1 + \cos(x))^2} \, dx = - \int \frac{1}{(1 + \cos(x))^2} \cdot (-\sin(x)) \, dx$$

$$= - \int \frac{1}{u^2} \, du = \frac{1}{u} + C = \frac{1}{1 + \cos(x)} + C.$$

• $\int \frac{1 - \sqrt{x}}{\sqrt{1 + \sqrt{x}}} \, dx$. Take $u = 1 + \sqrt{x}$, $du = \frac{1}{2\sqrt{x}}$, so $\sqrt{x} = u - 1$, $1 - \sqrt{x} = 2 - u$.

$$\int \frac{1 - \sqrt{x}}{\sqrt{1 + \sqrt{x}}} \, dx = \int \frac{1 - \sqrt{x}}{\sqrt{1 + \sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} \, dx$$

$$= \int \frac{2 - u}{\sqrt{u}} \cdot (2u) \, du = -2 \int \frac{u^2 - 3u + 2}{\sqrt{u}} \, du$$

$$= -2 \int u^{3/2} - 3u^{1/2} + 2u^{-1/2} \, du = -2\left(\frac{2}{5}u^{5/2} - 2u^{3/2} + 4u^{1/2}\right) + C$$

$$= -\frac{4}{5}(1 + \sqrt{x})^{5/2} + 4(1 + \sqrt{x})^{3/2} - 8(1 + \sqrt{x})^{1/2} + C.$$

Whew! Here we did not have the derivative factor $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ already present: we had to multiply and divide by it to get du, then express the remaining factors in terms of u. By luck, the resulting $\int f(u) \, du$ was do-able.

• $\int \sec^2(x) \tan(x) \, dx$. Here we could take $u = \tan(x)$, $du = \sec^2(x) \, dx$:

$$\int \sec^2(x) \tan(x) \, dx = \int \tan(x) \cdot \sec^2(x) \, dx$$

$$= \int u \, du = \frac{1}{2}u^2 + C = \frac{1}{2} \tan^2(x) + C.$$

Alternatively, use the inside function $z = \sec(x)$, $dz = \tan(x) \sec(x) \, dx$:

$$\int \sec^2(x) \tan(x) \, dx = \int \sec(x) \cdot \tan(x) \sec(x) \, dx$$

$$= \int z \, dz = \frac{1}{2}z^2 + C = \frac{1}{2} \sec^2(x) + C.$$

Thus $\frac{1}{2}\tan^2(x)$ and $\frac{1}{2}\sec^2(x)$ are two different antiderivatives, but what about the Antiderivative Uniqueness Theorem (§3.9)? In fact, the identity $\tan^2(x) + 1 = \sec^2(x)$ implies:

$$\frac{1}{2}\tan^2(x) + \frac{1}{2} = \frac{1}{2}\sec^2(x).$$

These give the same antiderivative family: $\frac{1}{2}\tan^2(x) + C = \frac{1}{2}\sec^2(x) + C'$. ！
Substitution for definite integrals. We have, for \(u = g(x) \):

\[
\int_{a}^{b} f(g(x)) g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du.
\]

Example: \(\int_{2}^{3} x(1+x^2)^5 \, dx \). Taking \(u = 1+x^2 \), \(du = 2x \, dx \):

\[
\int_{2}^{3} x(1+x^2)^5 \, dx = \int_{3}^{4} \frac{1}{2}(1+x^2)^5 \cdot 2x \, dx = \int_{1+3}^{1+4^2} \frac{1}{2}u^5 \, du = \frac{1}{12} u^6 \bigg|_{u=17}^{u=10} = \frac{1}{12} 10^6 - \frac{1}{12} 17^6.
\]

Integral Symmetry Theorem: If \(f(x) \) is an odd function, meaning \(f(-x) = -f(x) \), then \(\int_{-a}^{a} f(x) \, dx = 0 \).

Proof. By the Integral Splitting Rule (§4.2), we have:

\[
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx.
\]

Substituting \(u = -x \), \(du = (-1) \, dx \) in the first term, including in the limits of integration, and using \(f(-x) = -f(x) \), we get:

\[
\int_{-a}^{0} f(x) \, dx = \int_{-a}^{0} -f(x) \cdot (-1) \, dx = \int_{-a}^{0} f(-x) \cdot (-1) \, dx
\]

\[
= \int_{-(-a)}^{0} f(u) \, du = \int_{a}^{0} f(u) \, du = -\int_{0}^{a} f(u) \, du = -\int_{0}^{a} f(x) \, dx.
\]

The last equality holds because the variable of integration is merely suggestive, and can be changed arbitrarily. Therefore \(\int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = -\int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 0 \), as desired.

Example: Evaluate the definite integral \(\int_{-\pi}^{\pi} x \cos(x) \, dx \). Here substitution will not work, and it is difficult to find an antiderivative. But since \((-x) \cos(-x) = -(x \cos(x)) \), the Theorem tells us the integral must be zero.

Geometrically, the integral is the signed area between the graph and the \(x \)-axis:
Application: Heart Flow Rate. In a standard medical test to measure the rate of blood pumped by the heart, \(r \) liters/min, doctors inject a colored dye into a vein flowing toward the heart, then measure the concentration of dye in arterial blood as it is pumped out from the heart, \(c(t) \) mg/liter after \(t \) minutes.

Problem: Given the dye concentration function \(c(t) \), determine the flow rate \(r \).

Let the variable \(\ell \) denote the liters of blood which have flowed through the artery since the start time. Assuming the (unknown) flow rate \(r \) is constant, we have \(\ell = rt \). Let \(C(\ell) \) be the dye concentration after \(\ell \) liters have flowed, so that \(C(\ell) = C(rt) = c(t) \).

Now, the integral \(\int_0^\infty C(\ell) \, d\ell \) sums up:

\[
(mg/\text{litrer concentration}) \times (\text{litrer increments}) = (mg \text{ increments of dye}),
\]

which computes the total amount of dye, \(D \) mg:

\[
D = \int_0^\infty C(\ell) \, d\ell.
\]

Performing the substitution \(\ell = rt, \, d\ell = r \, dt \), we have:

\[
D = \int_0^\infty C(rt) \, r \, dt = r \int_0^\infty c(t) \, dt.
\]

Then we may compute \(r \) as:

\[
r = \frac{D}{\int_0^\infty c(t) \, dt}.
\]

Since the total dye \(D \) is known (the amount injected), \(c(t) \) is measured by the test, and \(\int_0^\infty c(t) \, dt \) can be computed by Riemann sums,* we obtain flow rate \(r \).

* Since \(c(t) = 0 \) after all the dye has passed, \(\int_0^\infty c(t) \, dt \) can be cut off to a finite integral.