
Math 132 Newton’s Method Stewart §3.8

Roots of equations. We frequently need to solve equations for which there is
no neat algebraic solution, such as:

f(x) = x3 + x− 1 = 0 .

In this case, the best we can ask is an approximate solution, accurate to a specified
number of decimal places, and this is all we need for any practical purpose.

We can start with a computer graph of y = f(x), which is just a display of
many plotted points (x, f(x)):

A solution of f(x) = 0 is an x-intercept of the graph, and we see one,∗ call it
x = a, close to x = 0.5; that is, our first estimate is a ≈ 0.5. Computing:

f(0.5) = −0.375 < 0, f(0.6) = −0.184 < 0, f(0.7) = 0.043 > 0,

the Intermediate Value Theorem (§1.8) guarantees a solution 0.6 < a < 0.7;
thus we can improve our estimate to a ≈ 0.6. We could add a decimal place by
checking f(0.61), f(0.62), . . . , f(0.69) to see where the values change from negative
to positive, but this is clearly very tedious and inefficient.

Newton’s Method is an amazingly efficient way to refine an approximate solu-
tion to get more and more accurate ones, until the required accuracy is reached.
Let us call our first estimate x1 = 0.5. We are seeking the true solution x = a, the
x-intercept of y = f(x). As in §2.9, let us approximate y = f(x) by its tangent
line at our initial point at (x1, f(x1)), namely y = f(x1) + f ′(x1)(x−x1):
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∗ How do we know there is no other solution x = b? If there were, Rolle’s Theorem (§3.2) says

that there would be some x = c ∈ (a, b) with f ′(c) = 0, namely a hill or valley of y = f(x). But
f ′(x) = 3x2 +1 = 0 clearly has no solutions, so y = f(x) has no hills or valleys, and there cannot
exist another solution x = b.



You can see how the tangent line (in red) is very close to the graph near x = x1, and
fairly close even near the true solution x = a. We cannot solve for the x-intercept
of y = f(x), but we can find the x-intercept of the line, denoted x = x2:

f(x1) + f ′(x1)(x−x1) = 0 =⇒ x = x2 = x1 −
f(x1)

f ′(x1)
.

This solution x2 is not exactly a, but it is closer than the initial estimate x1.
Now we can iterate (green line), repeating the same computation starting with

x2 instead of x1. The result is:

x3 = x2 −
f(x2)

f ′(x2)
,

which is much closer to a; then x4 = x3 − f(x3)
f ′(x3)

; and repeating the same way we
get the following spreadsheet, computing to 3 decimal places:

n xn f(xn) f ′(xn) xn+1

1 0.500 −0.375 1.750 0.714

2 0.714 0.079 2.531 0.683

3 0.683 0.002 2.400 0.682

4 0.682 0.000 2.397 0.682

5 0.682 0.000 2.397 0.682

The xn’s will continue as real numbers to converge closer and closer to a, but
since we do not see any difference in our 3 decimal places after x4, there is no
point in continuing. We already have our answer within the specified accuracy:

a ≈ 0.682 accurate to 3 decimal places.

In the table, f(x4) ≈ 0.000 is indeed an approximate solution to f(x) = 0.

Newton’s Method. We wish to solve an equation f(x) = 0, with the true
solution x = a fairly close to an intial estimate a ≈ x1, and the final approximation
a ≈ xn accurate to a specified number of decimal places.



1. Using a calcuator, spreadsheet, or computer algebra system, compute x2, x3, . . .
according to the formula:

xn+1 = xn −
f(xn)

f ′(xn)
,

computing with at least the specified accuracy (number of decimal places).

2. Stop once xn ≈ xn+1 are the same up to the given accuracy. The final
approximation is a ≈ xn.

Trigonometric equation: Solve the following equation to 3 decimal places:

cos(x) = x .

(As always in Calculus, we assume x is in radians: see §2.5 end.)

Looking at the graph, we see that there is a unique solution somewhere around
x1 = 1. This seems different from the previous case, since we seek the intersection
of two graphs rather than the x-intercept of a single graph; but we can simply
rewrite the equation as f(x) = x− cos(x) = 0. Newton’s Method gives:

xn+1 = xn −
xn − cos(xn)

1 + sin(xn)
,

x1 x2 x3 x4

1.000 0.750 0.739 0.739

That is, the solution is a ≈ 0.739 to 3 places.

Numerical roots. The number
√

2 is a “known value”: a calculator can imme-
diately tell us that

√
2 = 1.41421356 . . . . But just how does the calculator know

this? Newton’s Method, that’s how!
By definition,

√
2 is the solution of x2 = 2, or f(x) = x2 − 2 = 0. Starting

with x1 = 1, the Method gives xn+1 = xn − x2
n−2
2xn

and:

x1 1.00000000

x2 1.50000000

x3 1.41666667

x4 1.41421569

x5 1.41421356

x6 1.41421356



Here we see the power of the Method: with just a couple of dozen +,−,×,÷
calculator operations, it converged from 0 places to 8 places of accuracy.

We could also do the Method with fractions rather than decimals to get very
accurate fractional approximations of

√
2:

x1 1

x2 3/2

x3 17/12

x3 577/408

Already x3 = 17
12 is a very good approximation, since (1712)2 = 289

144 = 2 1
144 , very

close to 2. However, no fraction or finite decimal can give
√

2 exactly: it is known
to be an irrational number.

Rate of convergence. Newton’s Method gives great accuracy very quickly. In
fact, each iteration approximately doubles the number of accurate decimal places.
We discuss approximation errors in Calculus II §11.11.


