
Math 132 Mean Value Theorem Stewart §3.2

Vanishing derivatives. We will prove some basic theorems which relate the
derivative of a function with basic properties of its graph, culminating in the
Uniqueness Theorem at the end. The first result is:

Rolle’s Theorem: If f(x) is continuous on a closed interval x ∈ [a, b]
and differentiable on the open interval x ∈ (a, b), and f(a) = f(b),
then there is some point c ∈ (a, b) with f ′(c) = 0.

Here x ∈ [a, b] means a ≤ x ≤ b, and x ∈ (a, b) means a < x < b. See the graph
at left for an example: no matter how the curve wiggles, it must be horizontal
somewhere.

Physically, imagine f(t) represents the height of a rocket at time t, starting
and finishing on its launch pad over the time interval t ∈ [a, b]. The theorem
says there must be a pause in the motion where f ′(t) = 0: this is the moment
the rocket runs out of fuel and starts to fall.

Proof of Theorem. Assume f(x) satisfies the hypotheses∗ of the Theorem. The
Extremal Value Theorem (§3.1) guarantees that the continuous function f(x)
has at least one absolute maximum point x = c1 ∈ [a, b].

• If c1 6= a, b, then c1 ∈ (a, b), and the First Derivative Theorem (§3.1) says
that f ′(c1) = 0.

• On the other hand, if c1 = a or b, then f(c1) = f(a) = f(b). Still, f(x)
also has an absolute minimum point x = c2. If c2 ∈ (a, b), then f ′(c2) = 0
as before.

• The only case left is if c1 = a or b, and also c2 = a or b, so that f(c1) =
f(c2) = f(a) = f(b). Since the maximum and minimum values are the
same, f(x) cannot move above or below f(a). Thus, f(x) can only be a
constant function, and f ′(c) = 0 for all c ∈ (a, b).

In every case, the conclusion† holds, Q.E.D.‡

Notes by Peter Magyar magyar@math.msu.edu
∗In formal mathematics, hypothesis (plural hypotheses) means the “if” part of a theorem,

the setup which is given or assumed. In our theorem, the three hypotheses are: f(x) is
continuous on [a, b], f(x) is differentiable on (a, b), and f(a) = f(b).
†Conclusion means the “then” part of a theorem, the payoff which is to be deduced from

the hypothesis: in our theorem, that f ′(c) = 0.
‡Latin quod erat demonstrandum, “which was to be shown”, the traditional end of a proof.



For Rolle’s Theorem, as for most well-stated theorems, all the hypotheses
are necessary to be sure of the conclusion. In the graph at right above, y = g(x)
has a corner and g′(1) does not exist, so just one hypothesis fails at just one
point. But already the conclusion is false: g′(c) = 1 for c < 1 and g′(c) = −1
for c > 1, but nowhere is g′(c) = 0. In physical terms, the velocity jumps
instantaneously from 1 to −1 like an idealized ping-pong ball, and there is no
well-defined velocity at the moment of impact.

Derivatives versus difference quotients. Throughout our theory, the
derivative f ′(a) has been shadowed by the difference quotient ∆f

∆x = f(b)−f(a)
b−a ,

over some interval [a, b]. Numerically, the difference quotient is an approxima-
tion to the derivative: df

dx ≈
∆f
∆x , provided ∆x is small. In physical terms, the

difference quotient is the average rate of change of f(x) over x ∈ [a, b]. Geo-
metrically in terms of the graph y = f(x), the difference quotient is the slope
of the secant line cutting through the points (a, f(a)) and (b, f(b)).

Now we come to the basic theorem that connects the derivative of a function
with its basic properties. It says that the derivative is somewhere exactly equal
to the difference quotient (the slope of one particular tangent is equal to the
slope of the secant):

Mean Value Theorem (MVT): If f(x) is continuous on a closed in-
terval x ∈ [a, b] and differentiable on the open interval x ∈ (a, b),

then there is some point c ∈ (a, b) with f ′(c) = f(b)−f(a)
b−a .

See the picture below for an example: as the graph rises from (a, f(a)) to
(b, f(b)), at some points the tangent line must be parallel to the secant line.

Note that Rolle’s Theorem is the special case of MVT in which the secant line
is horizontal. In fact, we will prove MVT for a general f(x) by cooking up a
new function g(x) for which Rolle’s Theorem applies, then translating Rolle’s
conclusion back in terms of f(x).

Proof of MVT. Suppose f(x) satisfies the hypotheses. Then define a new func-
tion g(x), shown in the picture, which measures the height from the graph

y = f(x) down to the secant line y = f(a) + f(b)−f(a)
b−a (x−a):

g(x) = f(x)− f(a)− f(b)−f(a)
b−a (x−a).



Then g(x) is continuous on [a, b] by the Limit Laws (§1.6), and differentiable
on (a, b) by the Derivative Rules (§2.3). In fact,

g′(x) = f ′(x)− 0− f(b)−f(a)
b−a (1−0) = f ′(x)− f(b)−f(a)

b−a ,

since f(a) and f(b)−f(a)
b−a are constants (having no x in them).

Also, we can easily compute that g(a) = g(b) = 0, so all the hypotheses of
Rolle’s Theorem hold for g(x). Thus the conclusion of Rolle’s Theorem also
holds: there is some c ∈ (a, b) with g′(c) = 0. That is,

g′(c) = f ′(c)− f(b)−f(a)
b−a = 0,

which means f ′(c) = f(b)−f(a)
b−a , Q.E.D.

The Mean Value Theorem only guarantees there is some such c ∈ (a, b), it does
not give any way to find it, and usually there is no need. However, for practice
we may try to find x = c by solving for x in the equation f ′(x) = f(b)−f(a)

b−a .

example: Let f(x) = 5
√
x− x

√
x over the interval [a, b] = [0, 4].

To check the hypotheses of MVT, note that
√
x is continuous for all x ≥ 0, and

thus over [0, 4]. As for differentiability:

f ′(x) =
(

5x1/2 − x3/2
)′

= 5
2x
−1/2 − 3

2x
1/2

is defined for x > 0, and hence over x ∈ (0, 4): the hypothesis allows f ′(a) =
f ′(0) to be undefined. Thus we conclude there must be some c ∈ (0, 4) with

f ′(c) = f(b)−f(a)
b−a = 2−0

4−0 = 1
2 . If we wish to find this c, we must solve:

f ′(x) = 5
2x
−1/2 − 3

2x
1/2 = 1

2 ,

which is equivalent to 3x+
√
x− 5 = 0. Substituting the variable u =

√
x gives

3u2 + u− 5 = 0, so the Quadratic Formula gives:

u =
√
x =

−1±
√

12−4(3)(−5)

2(3) = −1±
√

61
6 .

The negative solution is impossible, and the positive one gives x = c =
(√

61−1
6

)2
≈

1.29, which agrees with the picture.



Derivative controls direction. As a first application of MVT, we prove the
expected ways that the sign of the derivative f ′(x) should control the increas-
ing/decreasing behavior of the function f(x). For example:

Theorem: A function with positive derivative is increasing. That is, if f ′(x) > 0
for all x in an interval, then f(a) < f(b) for any a < b within the interval.

Proof: Assume f ′(x) > 0 for all x ∈ (a, b). By MVT, f ′(c) = f(b)−f(a)
b−a for some

c ∈ (a, b), so f(b)− f(a) = (b−a) f ′(c) > 0 by assumption, and f(b) > f(a).

Mathematical and physical uniqueness.

Uniqueness theorem. Let f(x) be differentiable for x ∈ (p, q).
(a) If f ′(x) = 0 for all x, then f(x) = C, a constant function.
(b) If f(x), g(x) have the same derivative f ′(x) = g′(x) for all x,

then f(x) = g(x) + C for some constant C.
(c) If f(x), g(x) have the same derivative f ′(x) = g′(x) for all x,

and the same initial value f(c) = g(c) for some c ∈ [p, q], then
they are the same function: f(x) = g(x).

Proof. (a) Assume the hypothesis f ′(x) = 0 for all x ∈ (p, q), and consider
two outputs f(a) and f(b) for any a < b in [p, q]. Applying the Mean Value

Theorem to the smaller interval [a, b], we get f(b)−f(a)
b−a = f ′(c) = 0, since all

derivatives f ′(x) are zero. Multiplying by b−a, we get f(b)−f(a) = (b−a) 0 = 0,
so f(b) = f(a). That is, all the outputs of f(x) are equal, and f(x) is constant.

(b) Assume the hypothesis f ′(x) = g′(x) for all x ∈ (a, b). Now the function
h(x) = f(x)− g(x) has h′(x) = f ′(x)− g′(x) = 0, so we can apply part (a) to
conclude that h(x) is constant, h(x) = f(x)− g(x) = C, and f(x) = g(x) + C.

(c) In the situation of (b), we also assume f(c) = g(c). By (b), we know
f(x) = g(x) +C for all x. In particular for x = c, we have C = f(c)− g(c) = 0,
so f(x) = g(x) + C = g(x), Q.E.D.

To see the significance of this theorem, recall the Ballistic Equation (§2.7) for
the height s(t) of an object thrown upward from initial height s(0) = s◦, with
initial velocity s′(0) = v◦, and constant gravitational acceleration −g, so that:

s′(t) = v◦ − gt, s(0) = s◦.

Now, the function
s(t) = s◦+ v◦t− 1

2gt
2

does indeed satisfy these conditions.
But does that guarantee we have the correct function s(t)? If there were

some other function s̃(t) with the same derivative s̃ ′(t) = s′(t) and the same
initial value s̃(0) = s(0), then s̃(t) would be just as good a candidate to give
the height of the object, and our mathematical theory would not produce a
clear physical prediction. However, the Uniqueness Theorem (c) shows that
s̃(t) = s(t): there is only one mathematical solution to the equations.

Experiment shows that objects launched in exactly the same way always fly
the same way, not according to s(t) in some experiments and a different s̃(t) in
other experiments. This is what we mean by physical law. Our Theorem shows
the mathematical solution has the same uniqueness as experimental results.§

§The theory of quantum mechanics, however, which explains atomic-scale phenomena,



Cauchy Mean Value Theorem. This is a generalized form of the MVT
involving two functions f(x) and g(x), stating the quotient ∆f

∆g = f(b)−f(a)
g(b)−g(a) is

equal to f ′(c)
g′(c) at some point c, provided the denominators are non-zero. Multi-

plying out to clear denominators, this becomes:

Theorem. If f(x), g(x) are continuous on [a, b], differentiable on (a, b), then
there is some c ∈ (a, b) with

(f(b)−f(a)) g′(c) = (g(b)−g(a)) f ′(c).

Proof. Apply Rolle’s Theorem to h(x) = (f(b)−f(a))g(x) − (g(b)−g(a))f(x),
which has h(a) = h(b). Then h′(c) = 0 gives the formula.

Proof of Linear Approximation Error Estimate. A final application of
MVT. From §2.9, consider the linear approximation of f(x) centered at x = a:

f(x) ≈ La(x) = f(a) + f ′(a)(x−a).

According to the Linear Approximation Theorem, the error is controlled by the
second derivative: if |f ′′(x)| ≤ B over an interval x ∈ (a−δ, a+δ), then:

|f(x)− La(x)| ≤ 1
2B |x−a|

2 for x ∈ (a−δ, a+δ).

Proof. In our formulas, we consider x as a variable and a as an unspecified
constant, but this is merely a point of view. We may instead hold x as a fixed
value and allow a to vary, indicating this by replacing a with the variable t.
Then we can take the derivative of the error function with respect to t, while
keeping x constant:

ε(t)
def
= f(x)− Lt(x) = f(x)− f(t)− f ′(t)(x−t)

ε′(t) = 0− f ′(t)−
(
f ′(t)(−1) + f ′′(t)(x−t)

)
= −f ′′(t)(x−t).

Now apply MVT to the interval [a, x]:¶ there is some t = c ∈ (a, x) with:

ε(x)− ε(a)

x− a
= ε′(c).

Considering that ε(x) = 0, we find that:

ε(a) = −ε′(c) (x−a) = f ′′(c) (x−c)(x−a).

Finally, we use the hypothesis |f ′′(c)| < B along with |x−c| < |x−a| to get:

|f(x)− La(x)| = |ε(a)| = |f ′′(c)| · |x−c| · |x−a| < B |x−a|2.

This is a slightly weaker upper bound than desired, missing a factor of 1
2 .

To get the strong upper bound, apply Cauchy MVT to the functions ε(t)

and g(x) = (x−t)2. There is some c ∈ (a, x) with ε′(c)
g′(c) = ε(x)−ε(a)

g(x)−g(a) , so that

ε(a) = −ε′(c)(x−a)2/2(x−c) = 1
2f
′′(c)(x−a)2, and finally |ε(a)| < 1

2M |x−a|
2.

goes beyond the framework of deterministic laws, incorporating randomness not just as error
(experiments are never perfectly controlled), but as an intrinsic part of the setup. It requires
a yet higher mathematical theory, in which we apply calculus not to specific positions of
objects, but to probability distributions on all possible positions.
¶This assumes a < x, but the argument adapts easily to the other case x < a.


