
Math 132 Linear Approximation Stewart §2.9

Tangent linear function. The geometric meaning of the derivative f ′(a) is the slope of
the tangent to the curve y = f(x) at the point (a, f(a)). The tangent line is itself the graph
of a linear function y = L(x), where:

L(x) = f(a) + f ′(a)(x−a).

This is correct because the line y = f(a) + f ′(a)(x−a) has slope m = f ′(a), and L(a) =
f(a) + f ′(a)(a−a) = f(a), so the line passes through the point (a, L(a)) = (a, f(a)).

The value f ′(a) is not just the slope of the tangent line: it is also the slope of the graph
itself, because as we zoom in toward (a, f(a)), the graph and the tangent line become
indistinguishable∗:

This suggests a further numerical meaning of the derivative: any function f(x) is very
close to being a linear function near a differentiable point x = a, so that L(x) is a good
approximation for f(x) when x is close to a:

f(x) ≈ L(x) = f(a) + f ′(a)(x−a) for x ≈ a.

Much later in §11.10 of Calculus II, we will study Taylor series, which give much better,
higher-order approximations to f(x).

example: Find a quick approximation for
√

1.1 without a calculator. Clearly, this is close
to
√

1 = 1, but we want more accuracy. Take f(x) =
√
x, so f ′(x) = 1

2x
−1/2 and f ′(1) = 1

2 .
For x near a = 1, we have the linear function:

L(x) = f(1) + f ′(1)(x−1) = 1 + 1
2(x−1),

and the linear approximation:

√
1.1 = f(1.1) ∼= L(1.1) = 1 + 1

2(0.1) = 1.05.

A calculator gives:
√

1.1 ≈ 1.049, so our answer is correct to 2 decimal places with very
little work. Furthermore, we get approximations for all other square roots near 1 for free,
for example

√
0.96 ∼= 1 + 1

2(0.96−1) = 1−0.02 = 0.98.
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∗By contrast, if we zoom in toward a non-differentiable point, such as (0, 0) for the graph y = |x|, the

graph does not look more and more linear, but rather keeps its angular appearance.



example: Approximate sin(42◦) without a scientific calculator. This is clearly close to

sin(45◦) =
√
2
2 ≈ 0.71, so let us take a = 45◦. Now, to use calculus with trig functions, we

must always convert to radians: a = 45( 2π
360) = π

4 rad. Thus f ′(a) = sin′(π4 ) = cos(π4 ) =
√
2
2 ,

and we have the linear function:

L(x) =
√
2
2 +

√
2
2 (x−π

4 ).

The linear approximation is:

sin(42◦) = sin
(
42( 2π

360)
)
≈ L(x) =

√
2
2 +

√
2
2

(
42( 2π

360)−π
4

)
=
√
2
2 −

√
2
2

(
π
60

)
≈ 0.67.

A scientific calculator gives sin(42◦) ≈ 0.669, so again the linear approximation is accurate
to two decimal places.

Input/output sensitivity. We rewrite the linear approximation f(x) ≈ f(a)+f ′(a)(x−a):

∆f = f(x)−f(a) ≈ f ′(a)(x−a) = f ′(a) ∆x.

This estimates the change of output f(x) away from f(a), in proportion to the change of
input x away from a. In Leibnitz notation, with y = f(x), we write:

∆y ≈ dy

dx
∆x.

Here we mean dy
dx = dy

dx |x=a = f ′(a). If we think of ∆x as an error from an intended input
value x = a, then ∆f ≈ f ′(a) ∆x approximates the error from the intended output f(a).

example: A disk of radius r = 5 cm is to be cut from a metal sheet of weight 3 g/cm2. If
the radius is measured to within an error of ∆r = ±0.2 cm, what is the approximate range
of error in the weight? This is the kind of error-control problem from our limit analyses in
Notes §1.7, only now we have the powerful tools of calculus to give a simple answer.

The weight is the density 3 multiplied by the area πr2, given by the function:

W = W (r) = 3πr2 with W (5) = 75π ≈ 235.6 ,

and we aim to find the error ∆W away from this intended value. Since:

dW
dr = 3π(2r) = 6πr and dW

dr |r=5 = 30π,

we have the approximate error:

∆W ≈ dW
dr ∆r = 30π∆r.

Thus, for ∆r = ±0.2, we have ∆W ≈ 30π(0.2) ≈ 18.8. That is:

r = 5± 0.2 cm =⇒ W ≈ 235.6± 18.8 g .

The point here is not just the specific error estimate, but the formula which gives, for
any small input error ∆r, the resulting output error ∆W ≈ 30π∆r ≈ 94 ∆r. The coefficient
30π measures the sensitivity of the output W to an error in the input r.



Differential notation. For y = f(x), we rewrite a small ∆x as dx, and we define:

dy = dy
dx dx and df = f ′(x) dx.

The dependent quantity dy is called a differential: we can think of it as the linear approxi-
mation to ∆y, as pictured below:

example: We can rewrite the approximation in the previous example as:

∆W ≈ dW = dW
dr dr = d

dr (3πr2) dr = 6πr dr.

Here dr is just another notation for ∆r, and the approximation ∆W ≈ dW = 6πr dr is
valid near any particular value of r, such as r = 5 in the example.

Linear Approximation Theorem. How close is the approximation ∆y ≈ dy, or equiva-
lently f(x) ≈ L(x) = f(a) + f ′(a)(x−a)? In fact, the difference between f(x) and L(x) is
not only small compared to ∆x = x−a, but usually proportional to (∆x)2 = (x−a)2, which
becomes tiny as ∆x→ 0. (E.g. if ∆x = 0.01 = 1%, then (∆x)2 = 0.0001 = 1% of 1%.)

Also, the slower the slope f ′(x) changes near x = a, the closer y = f(x) is to its tangent
line, and this deviation is measured by the rate of change of f ′(x), namely the second
derivative f ′′(x). The following theorem gives an upper bound on the error in the linear
approximation, ε(x) = f(x)− L(x).

Theorem: Suppose f(x) is a function such that |f ′′(x)| < B on the interval
x ∈ [a−δ, a+δ]. Then, for all x ∈ [a−δ, a+δ], we have:

f(x) = f(a) + f ′(a)(x−a) + ε(x), where |ε(x)| < 1
2B|x−a|

2.

We give the proof in §3.2 on the Mean Value Theorem.

example: For f(x) =
√
x near x = 1, we have f ′(x) = 1

2x
−1/2 and f ′(1) = 1

2 . Also

f ′′(x) = −1
4x
−3/2 (a decreasing function), and on the interval x ∈ [0.9, 1.1], we have:

|f ′′(x)| ≤ |f ′′(0.9)| = 1
4(0.9)−3/2 ≈ 0.29 < 1

3 .

Thus we may take B = 1
3 and 1

2B = 1
6 , so that:

√
x =

√
1 + 1

2(x−1) + ε(x), where |ε(x)| < 1
6 |x−1|2.

For example, the error at x = 1.1 is |ε(1.1)| < 1
6(0.1)2 < 0.002, so:

√
1.1 = 1 + 1

2(0.1)± 0.002 = 1.05± 0.002 .

Indeed, the calculator value
√

1.1 ≈ 1.049 lies in the error interval (0.048, 0.052).


