Math 132 Linear Approximation Stewart §2.9

Tangent linear function. The geometric meaning of the derivative f’(a) is the slope of
the tangent to the curve y = f(z) at the point (a, f(a)). The tangent line is itself the graph
of a linear function y = L(x), where:

L(z) = f(a)+ f'(a)(z—a).

This is correct because the line y = f(a) + f'(a)(z—a) has slope m = f'(a), and L(a) =
f(a) + f'(a)(a—a) = f(a), so the line passes through the point (a, L(a)) = (a, f(a)).

The value f’(a) is not just the slope of the tangent line: it is also the slope of the graph
itself, because as we zoom in toward (a, f(a)), the graph and the tangent line become
indistinguishable*:
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This suggests a further numerical meaning of the derivative: any function f(x) is very
close to being a linear function near a differentiable point z = a, so that L(z) is a good
approximation for f(z) when z is close to a:

f(z) =~ L(z) = f(a)+ f'(a)(z—a) for z =~ a.

Much later in §11.10 of Calculus II, we will study Taylor series, which give much better,
higher-order approximations to f(z).

EXAMPLE: Find a quick approximation for /1.1 without a calculator. Clearly, this is close
to v/1 = 1, but we want more accuracy. Take f(z) = /7, so f'(z) = 3272 and f'(1) = 1.
For x near a = 1, we have the linear function:

L(z) = f(1) + f(1)(z-1) = 1+ 5(z—1),
and the linear approximation:
V11 = f(1.1) = L(1.1) =1+ (0.1) = 1.05.

A calculator gives: /1.1 &~ 1.049, so our answer is correct to 2 decimal places with very
little work. Furthermore, we get approximations for all other square roots near 1 for free,
for example /0.96 = 1 + %(0.96—1) =1-0.02 =0.98.
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*By contrast, if we zoom in toward a non-differentiable point, such as (0,0) for the graph y = |z|, the
graph does not look more and more linear, but rather keeps its angular appearance.



EXAMPLE: Approximate sin(42°) without a scientific calculator. This is clearly close to
sin(45°) = g ~ 0.71, so let us take a = 45°. Now, to use calculus with trig functions, we
must always convert to radians: a = 45(35) = T rad. Thus f/(a) = sin’(§) = cos(Z) = ?,
and we have the linear function:

The linear approximation is:
sin(42°) = sin(42(25)) ~ L(z) = %2+ ¥2 (42(25)-1) = L2 - L2 (Z) ~ 0.67.

A scientific calculator gives sin(42°) ~ 0.669, so again the linear approximation is accurate
to two decimal places.

Input/output sensitivity. We rewrite the linear approximation f(x) ~ f(a)+f'(a)(z—a):
Af = f(z)=f(a) = f(a)(z—a) = f'(a) Az.

This estimates the change of output f(x) away from f(a), in proportion to the change of
input x away from a. In Leibnitz notation, with y = f(z), we write:

@ Ax.
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Here we mean % = g—g\ a=a = ['(a). If we think of Az as an error from an intended input

value z = a, then Af =~ f'(a) Az approximates the error from the intended output f(a).

EXAMPLE: A disk of radius 7 = 5 c¢m is to be cut from a metal sheet of weight 3 g/cm?. If
the radius is measured to within an error of Ar = +0.2 cm, what is the approximate range
of error in the weight? This is the kind of error-control problem from our limit analyses in
Notes §1.7, only now we have the powerful tools of calculus to give a simple answer.

The weight is the density 3 multiplied by the area 712, given by the function:

W=W(r)=3m? with  W(5) = 75m ~ 235.6,
and we aim to find the error AW away from this intended value. Since:

%‘,’ = 3m(2r) = 6nr and %|T:5 = 30m,

we have the approximate error:

AW = %Ar = 307 Ar.

Thus, for Ar = 0.2, we have AW =~ 307(0.2) ~ 18.8. That is:
r=5=+£0.2cm - W ~ 235.6+£18.8¢g.

The point here is not just the specific error estimate, but the formula which gives, for
any small input error Ar, the resulting output error AW =~ 30w Ar ~ 94 Ar. The coefficient
307w measures the sensitivity of the output W to an error in the input r.



Differential notation. For y = f(x), we rewrite a small Az as dz, and we define:
dy = ®dz  and df = f'(z)dx.

The dependent quantity dy is called a differential: we can think of it as the linear approxi-
mation to Ay, as pictured below:
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EXAMPLE: We can rewrite the approximation in the previous example as:
AW ~ dW = War = L(3mr?)dr = 6mradr.

Here dr is just another notation for Ar, and the approximation AW =~ dW = 6nrdr is
valid near any particular value of r, such as r = 5 in the example.

Linear Approximation Theorem. How close is the approximation Ay = dy, or equiva-
lently f(z) ~ L(z) = f(a) + f'(a)(x—a)? In fact, the difference between f(z) and L(z) is
not only small compared to Az = z—a, but usually proportional to (Az)? = (z—a)?, which
becomes tiny as Az — 0. (E.g. if Az = 0.01 = 1%, then (Az)? = 0.0001 = 1% of 1%.)

Also, the slower the slope f’(z) changes near x = a, the closer y = f(x) is to its tangent
line, and this deviation is measured by the rate of change of f’(x), namely the second
derivative f”(z). The following theorem gives an upper bound on the error in the linear
approximation, e(x) = f(x) — L(x).

Theorem: Suppose f(z) is a function such that |f”(z)| < B on the interval
x € [a—0,a+0]. Then, for all z € [a—J, a+J], we have:

f(x) = f(a)+ f'(a)(z—a) + &(z), where le(z)| < Blz—al?.
We give the proof in §3.2 on the Mean Value Theorem.
EXAMPLE: For f(v) = /z near = 1, we have f'(z) = 327%2 and f'(1) = 1. Also
f(z) = —%x_3/2 (a decreasing function), and on the interval = € [0.9, 1.1], we have:
|f"(x)] < |£7(0.9)] = 1(0.9)73/? = 0.29 < L.
Thus we may take B = % and %B = é, so that:
VT = V1+i(z-1) +e(z), where le(z)| < é|x—1]2.
For example, the error at x = 1.1 is |e(1.1)| < (0.1)? < 0.002, so:
VI = 141(0.1)+0.002 = 1.05+0.002.

Indeed, the calculator value /1.1 ~ 1.049 lies in the error interval (0.048,0.052).



