Math 132 Trigonometric Derivatives Stewart §2.4

Derivative of sine and cosine. The sine and cosine are important functions describing
periodic motion. From the graph y = sin(x) (in blue), let us examine the slope at each
point to sketch the graph of the derivative y = sin’(z) (in red), as in Notes §2.3:
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The graph y = sin(z) has hills and valleys at x = :E%T(‘, :t%w,:l:%w, ..., so sin’(z) = 0 at
these points. For the interval —%77 <x < %ﬂ', the slope of y = sin(x) is positive with a
steepest slope of about 1 at z = 0, so y = sin’(z) swells above the z-axis from 0 to 1 to
0, and similarly on the other intervals. The graph we have drawn seems to be roughly the

cosine function, so we may guess that sin’(x) Z cos(z). In fact, this is true:
THEOREM: sin’(z) = cos(z) and cos'(z) = —sin(z).

Proof: Here is Newton’s original geometric argument. Consider as below a right triangle
with hypotenuse 1, angle = 6, and height sin(); and another triangle with slightly larger
angle 0 + Af and slightly larger height sin(6+A#).
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The small red triangle is enlarged at right. It is roughly a right triangle, but its hypotenuse
is a slightly curved arc of the unit circle with length A#, since radian angle measures
arclength. Its height is Asin() = sin(0+A6f) — sin(f). By equality of alternate interior
angles, the angle below the red triangle is 6, and the red triangle has one angle 8 = 5—0
and the other approximately #. Thus we can approximate the cosine of 6 as the red side
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adjacent to 6 divided by the hypotenuse:
Asin(f)  sin(0+A0) — sin(6)
N A0 ’
As the angle increment becomes very small, h = Af — 0, the circular arc becomes more
and more straight, and the approximation becomes an equality in the limit.
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cos(f) = Aléll)lo N sin’(0).
We can show cos’(f) = —sin(#) by examining the horizontal side of the small triangle, or

by using cos(f) = sin(§—0).

To be precise, we give error bounds. The exact angles inside the red sector are § and 64+Afd. The
straight line hypotenuse (secant of the sector) has length h1 = 2sin(A6/2) < A6, forming a right triangle
with angles 6; < 0+A#@ and 0, < 6_?, so that 6 < 6,. Thus:

Asin(6) S Asin(6)
h1 A0
On the other hand, if we draw a tangent from the upper vertex to the horizontal red line, we get a right
triangle with angle 6+A6 and hypotenuse ha > tan(A6) > Af. Hence:
Asin(0) S Asin(0)
A0 ha

Thus %%(9) is squeezed between cos(f) and cos(0+A6), and the limit follows.

Here we used sin(Af) < Af < tan(A6). To show this geometrically, compare areas of three increasing

cos(f) > cos(01) =

= cos(0+A0).

regions with angle Af: secant isosceles triangle 1 sin(Af); sector Af; tangent right triangle 3 tan(A#).
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Proof: The first limit is just the derivative of sine at zero:

lim sin(h) ~ lim sin(0+h) — sin(0)

— ain/(0) — _
Jim — lim, . = sin’(0) = cos(0) = 1,

and similarly for the second. (Or squeeze using sin(h) < h < sin(h)/cos(h), proved above.)

General trigonometric derivatives. From these basic derivatives, we can compute the
derivative of any trig function or combination of trig functions.

EXAMPLE: Compute the derivative of tan(z). By the Quotient Rule for derivatives (§2.3):

an’(z) — sin(@) \ _ sin’(z) cos(x) — sin(x) cos’(x)

o) <C05($)> cos?(x)

_ cos(z) cos(x) — sin(x)(— sin(z)) _ 1 _ sec()
cos?(x) cos?(x) ’

since cos?(z) + sin?(x) = 1. In fact, we get the following derivatives:

f(z) || sin(z) | cos(z) | tan(z) sec(x) cse(x) cot(z)

f'(x) || cos(x) | —sin(z) | sec?(x) | tan(x)sec(z) | — cot(x) csc(z) | — csc?(x)

’Warning: These formulas are for angle = in radians, NOT in degrees (see §2.5 end). ‘




Limits of quotients. We can also compute trigonometric limits of the form %. The trick

is to manipulate the numerators and denominators to get factors of the form Sing((gx(;: ) , where

g(x) is any quantity which goes to zero.

EXAMPLE: Compute lim,_ sm(;w). We have:

sin(3z) 3z
T

sin(h)

= lim 69 . lim 32 — 1im lim3 = 1-3 = 3.
z—0 z z—0 T h—0 z—0

. 1 31’) .
lim sin(3z) _ lim
r—0 z x—0

Here we use lim,_,q % = limy_,9 % = 1, where we substitute® h = g(z) = 3z, so that
x — 0 forces h — 0.

EXAMPLE: Compute lim,_.o :li?\%)) Starting with tan(x) = (S:g;((g, we get:
lim tan(z) = lim ! - sin(z) !

2—0 sin(y/z) 2—0 cos(x) “sin(y/7)

Lol E
2—0 cos(x) x sin(v/z) x

gy VE S 1 V1
2—0 cos(x) x Sm\(%/f) cos(0) 1

where lim,_, Sin\%@ = 1 by the substitution h = g(x) = \/z.

*By the Limit Substitution Theorem at the end of Notes §1.7.



