
Math 132 Trigonometric Derivatives Stewart §2.4

Derivative of sine and cosine. The sine and cosine are important functions describing
periodic motion. From the graph y = sin(x) (in blue), let us examine the slope at each
point to sketch the graph of the derivative y = sin′(x) (in red), as in Notes §2.3:

The graph y = sin(x) has hills and valleys at x = ±1
2π,±

3
2π,±

5
2π, . . ., so sin′(x) = 0 at

these points. For the interval −1
2π < x < 1

2π, the slope of y = sin(x) is positive with a
steepest slope of about 1 at x = 0, so y = sin′(x) swells above the x-axis from 0 to 1 to
0, and similarly on the other intervals. The graph we have drawn seems to be roughly the

cosine function, so we may guess that sin′(x)
??
= cos(x). In fact, this is true:

theorem: sin′(x) = cos(x) and cos′(x) = − sin(x).

Proof: Here is Newton’s original geometric argument. Consider as below a right triangle
with hypotenuse 1, angle x = θ, and height sin(θ); and another triangle with slightly larger
angle θ + ∆θ and slightly larger height sin(θ+∆θ).

The small red triangle is enlarged at right. It is roughly a right triangle, but its hypotenuse
is a slightly curved arc of the unit circle with length ∆θ, since radian angle measures
arclength. Its height is ∆sin(θ) = sin(θ+∆θ) − sin(θ). By equality of alternate interior
angles, the angle below the red triangle is θ, and the red triangle has one angle θ̄ = π

2 − θ
and the other approximately θ. Thus we can approximate the cosine of θ as the red side
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adjacent to θ divided by the hypotenuse:

cos(θ) ≈ ∆sin(θ)

∆θ
=

sin(θ+∆θ)− sin(θ)

∆θ
.

As the angle increment becomes very small, h = ∆θ → 0, the circular arc becomes more
and more straight, and the approximation becomes an equality in the limit.

cos(θ) = lim
∆θ→0

sin(θ+∆θ)− sin(θ)

∆θ

def
= sin′(θ).

We can show cos′(θ) = − sin(θ) by examining the horizontal side of the small triangle, or
by using cos(θ) = sin(π2−θ).

To be precise, we give error bounds. The exact angles inside the red sector are θ̄ and θ+∆θ. The
straight line hypotenuse (secant of the sector) has length h1 = 2 sin(∆θ/2) < ∆θ, forming a right triangle
with angles θ1 < θ+∆θ and θ̄1 < θ̄, so that θ < θ1. Thus:

cos(θ) > cos(θ1) =
∆sin(θ)

h1
>

∆sin(θ)

∆θ
.

On the other hand, if we draw a tangent from the upper vertex to the horizontal red line, we get a right
triangle with angle θ+∆θ and hypotenuse h2 > tan(∆θ) > ∆θ. Hence:

∆sin(θ)

∆θ
>

∆sin(θ)

h2
= cos(θ+∆θ).

Thus ∆sin(θ)
∆θ

is squeezed between cos(θ) and cos(θ+∆θ), and the limit follows.

Here we used sin(∆θ) < ∆θ < tan(∆θ). To show this geometrically, compare areas of three increasing

regions with angle ∆θ: secant isosceles triangle 1
2

sin(∆θ); sector 1
2
∆θ; tangent right triangle 1

2
tan(∆θ).

corollary: (a) lim
h→0

sin(h)

h
= 1 (b) lim

h→0

cos(h)− 1

h
= 0.

Proof: The first limit is just the derivative of sine at zero:

lim
h→0

sin(h)

h
= lim

h→0

sin(0+h)− sin(0)

h
= sin′(0) = cos(0) = 1,

and similarly for the second. (Or squeeze using sin(h) < h < sin(h)/cos(h), proved above.)

General trigonometric derivatives. From these basic derivatives, we can compute the
derivative of any trig function or combination of trig functions.

example: Compute the derivative of tan(x). By the Quotient Rule for derivatives (§2.3):

tan′(x) =

(
sin(x)

cos(x)

)′
=

sin′(x) cos(x)− sin(x) cos′(x)

cos2(x)

=
cos(x) cos(x)− sin(x)(− sin(x))

cos2(x)
=

1

cos2(x)
= sec2(x),

since cos2(x) + sin2(x) = 1. In fact, we get the following derivatives:

f(x) sin(x) cos(x) tan(x) sec(x) csc(x) cot(x)

f ′(x) cos(x) − sin(x) sec2(x) tan(x) sec(x) − cot(x) csc(x) − csc2(x)

Warning: These formulas are for angle x in radians, NOT in degrees (see §2.5 end).



Limits of quotients. We can also compute trigonometric limits of the form 0
0 . The trick

is to manipulate the numerators and denominators to get factors of the form sin(g(x))
g(x) , where

g(x) is any quantity which goes to zero.

example: Compute limx→0
sin(3x)
x . We have:

lim
x→0

sin(3x)
x = lim

x→0

sin(3x)
3x · 3x

x = lim
x→0

sin(3x)
3x · lim

x→0

3x
x = lim

h→0

sin(h)
h · lim

x→0
3 = 1 · 3 = 3.

Here we use limx→0
sin(3x)

3x = limh→0
sin(h)
h = 1, where we substitute∗ h = g(x) = 3x, so that

x→ 0 forces h→ 0.

example: Compute limx→0
tan(x)

sin(
√
x)

. Starting with tan(x) = sin(x)
cos(x) , we get:

lim
x→0

tan(x)

sin(
√
x)

= lim
x→0

1

cos(x)
· sin(x) · 1

sin(
√
x)

= lim
x→0

1

cos(x)
· sin(x)

x
· x ·

√
x

sin(
√
x)
· 1√

x

= lim
x→0

√
x

cos(x)
· sin(x)

x
· 1

sin(
√
x)√
x

=

√
0

cos(0)
· 1 · 1

1
= 0 ,

where limx→0
sin(
√
x)√
x

= 1 by the substitution h = g(x) =
√
x.

∗By the Limit Substitution Theorem at the end of Notes §1.7.


