One of the most basic features of a function is whether it is *continuous*. Roughly, this means that a small change in x always leads to a fairly small change in f(x), without instantaneous jumps. In physical terms, the position of a particle moving in space is continuous, but the position displayed in a video could have a gap, making the position function jump discontinuously. This can be made precise by saying that near x = a, the limit of f(x) is f(a):

Definition: A function f(x) is continuous at x = a whenever $\lim_{x \to a} f(x) = f(a)$.

Graphically, a function is continuous whenever the graph y = f(x) proceeds through the point (a, f(a)) without jumps or holes.

Types of discontinuity. If f(x) is defined near x = a, continuity can fail in several ways:

- i. Removable discontinuity: f(a) is undefined, but $\lim_{x\to a} f(x)$ exists.
- ii. Removable discontinuity: f(a) and $\lim_{x\to a} f(x)$ exist, but are unequal.
- iii. Jump discontinuity: the left and right limits are unequal, $\lim_{x\to a^+} f(x) \neq \lim_{x\to a^-} f(x)$.
- iv. Vertical asymptote: $\lim_{x\to a^+} f(x)$ and/or $\lim_{x\to a^-} f(x)$ are $\pm\infty$.
- v. Essential discontinuity: $\lim_{x\to a^+} f(x)$ and/or $\lim_{x\to a^-} f(x)$ do not exist.

We say f(x) is continuous on an interval whenever it is continuous at each point of the interval. For the endpoints of a closed interval* $x \in [a, b]$, we cannot take two-sided limits within the interval, so we only require $\lim_{x\to a^+} f(x) = f(a)$ and $\lim_{x\to b^-} f(x) = f(b)$.

Notes by Peter Magyar ${\tt magyar@math.msu.edu}$

^{*}The interval [a, b] is the *set* or collection of all numbers x between a and b, including the endpoints. The notation $x \in [a, b]$ means x is an *element* of the set [a, b], meaning it is one of the numbers between a and b, which means $a \le x \le b$.

Continuity by cases. For a function defined by cases, whose graph consists of several continuous pieces, the function is continuous provided the pieces join together at the transition points where cases meet.

For example, suppose a weight is winched from the ground at a constant speed for 8 seconds, is dropped, and lands 2 sec later. How fast should the winch haul upward?

The height s(t) feet at t sec is given by:

$$s(t) = \begin{cases} vt & \text{for } t \in [0, 8) \\ 64 - 16(t - 8)^2 & \text{for } t \in [8, 10]. \end{cases}$$

Here the first case is the lift at constant velocity v. For the second case, recall that a dropped weight falls $16t^2$ ft in t sec, so the 2 sec fall must start at height $16(2^2) = 64$ ft, then drop by $16(t-8)^2$ ft at each time past t=8.

We seek the correct speed v to make the rising and falling pieces join at t=8: that is, $v\cdot 8=s(8)=64-16(8-8)^2$, so $v=\frac{64}{8}=8$ ft/sec. This is continuous at t=8 since: $\lim_{t\to 8^-} s(t)=\lim_{t\to 8^-} 8t=64$, and $\lim_{t\to 8^+} s(t)=\lim_{t\to 8^+} 64-16(t-8)^2=64$, so the two-sided limit is $\lim_{t\to 8} s(t)=64=s(8)$.

Domain of continuity. Almost all functions defined by formulas are continuous, except at points where they are undefined. This follows from our methods for computing limits.

EXAMPLE: Find the points where the following function is continuous:

$$g(x) = \frac{(x^2 - 3x + 1)\sqrt{x + 1}}{x - 3}.$$

First, we consider the factors outside the square root, repeatedly applying the Limit Laws from §1.6:

$$\lim_{x \to a} \frac{x^2 - 3x + 1}{x - 3} = \frac{(\lim_{x \to a} x)^2 - 3(\lim_{x \to a} x) + 1}{(\lim_{x \to a} x) - 3} = \frac{a^2 - 3a + 1}{a - 3},$$

provided the denominator a-3 is non-zero; that is, $a \neq 3$. The Limit Laws also give $\lim_{x\to a} \sqrt{x+1} = \sqrt{a+1}$ provided a+1>0 to avoid the square root of a negative number; that is, for a>-1. Combining these, we have:

$$\lim_{x \to a} \frac{(x^2 - 3x + 1)\sqrt{x + 1}}{x - 3} = \lim_{x \to a} \frac{x^2 - 3x + 1}{x - 3} \cdot \lim_{x \to a} \sqrt{x + 1} = \frac{(a^2 - 3a + 1)\sqrt{a + 1}}{a - 3},$$

provided both factor limits exist, that is if $a \neq 3$ and a > -1. That is, g(x) is continuous for all these values of a. The remaining values are:

- a < -1, where g(x) is undefined, hence not continuous;
- a = -1, where g(x) is continuous, since at the left endpoint of the domain of definition, we only require the one-sided limit $\lim_{x\to a^+} g(x) = g(a)$;
- a = 3, where the function clearly has a vertical asymptote, discontinuity of type (iv).

In summary, our g(x) is continuous at every point where it is defined, that is, in the intervals[†] $[-1,3) \cup (3,\infty)$. The graph looks like:

[†]The half-open interval [a,b) is the set of all numbers x between a and b, including the left endpoint x=a but excluding the right endpoint x=b; that is, $a \le x < b$. The infinite interval (a,∞) means all x>a, with ∞ indicating no upper bound on the right.

Composing continuous functions. Another way to combine functions f(x) and g(x) is to *compose* or *chain* them, taking the output of g as the input of f to obtain the new function f(g(x)). Composition also preserves continuity: if g(x) is continuous at x = a, and f(x) is continuous at x = g(a), then f(g(x)) is continuous at x = a. This follows from the following theorem:

Composition Law: We have:

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)),$$

provided $\lim_{x\to a} g(x) = b$ and f(x) is continuous at x = b.

Proof. For any desired output error bound $\varepsilon > 0$, we must find some input accuracy $\delta > 0$ such that $|x - a| < \delta$ forces $|f(g(x)) - f(b)| < \varepsilon$.

Take any $\varepsilon > 0$. Since f(y) is continuous at y = b, there is $\delta_1 > 0$ such that $|y - b| < \delta_1$ forces $|f(y) - f(b)| < \varepsilon$. Also, since $\lim_{x \to a} g(x) = b$, there exists $\delta > 0$ such that $0 < |x - a| < \delta$ forces $|g(x) - b| < \delta_1$. Therefore $0 < |x - a| < \delta$ forces $|g(x) - b| < \delta_1$, which in turn forces $|f(g(x)) - f(b)| < \varepsilon$, as required.

Intermediate Value Theorem:

If f(x) is continuous for x in the interval [a,b], and r is between f(a) and f(b), meaning either f(a) < r < f(b) or f(a) > r > f(b), then there is a value $c \in (a,b)$ such that f(c) = r.

This says that as the function value f(x) goes continuously from f(a) to f(b), perhaps rising and falling many times, it must pass through every value r between f(a) and f(b).

Note that this is *not* necessarily true for a discontinuous function like g(x) in the graph above: taking [a,b] = [2,4], we have $g(2) \approx 1.7$, $g(4) \approx 11.2$, and g(2) < 7 < g(4), but there is a vertical asymptote discontinuity at t = 3, and there is $no \ c \in (2,4)$ with g(c) = 7.

However, g(x) is continuous over the interval [0,1], with $g(0) \approx -0.33$, $g(1) \approx 0.72$, and g(0) < 0 < g(1), so the Theorem says there must be some $c \in (0,1)$ with g(c) = 0. This is just the x-intercept visible in the graph.

EXAMPLE: Show that there exists a solution x = c to the equation $\cos(x) = x$. We have no easy way of solving this equation, but writing $f(x) = \cos(x) - x$, we know that f(0) = 1, $f(\pi) = -1 - \pi$, and $f(0) > 0 > f(\pi)$. Since f(x) is continuous, the Theorem guarantees some $c \in (0, \pi)$ with f(c) = 0, meaning $\cos(c) = c$.

[‡]Here c lies in the open interval (a,b), between a and b but excluding both endpoints: a < c < b.