1a. Write the multiplication table for multiplication modulo 11 (on an 11-hour clock).

\times	0	1	2	3	4	5	6	7	8	9	10
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											

Hints:

- Start by filling in the diagonals. For example $5 \times 5=25 \equiv 3(\bmod 11)$, since $25=2(11)+3$.
- Count right from each diagonal square, counting by the number of the row. For example, from $4 \times 4=5$, fill in $4 \times 5=5+4=9$, then $4 \times 6=9+4=13 \equiv 2$, etc.
- Finally, fill in the columns below the diagonal from the corresponding rows by the commutative law: $5 \times 4 \equiv 9,6 \times 4=\equiv 2$, etc.
b. Recall that the inverse a^{-1} means the mod-11 number which cancels a so that $a \times a^{-1} \equiv 1$. For example, $2^{-1}=6$, since $2 \times 6=12 \equiv 1(\bmod 11)$. Find the inverse of every number $0,1,2, \ldots, 10$, if there is one.

2. Having the inverse a^{-1} allows us to divide by a, intepreting $b \div a$ as $b \times a^{-1}$. Find all solutions (if any) for x in the following equations:
a. $5 x+7 \equiv 3(\bmod 11)$
b. $x^{2} \equiv 4$
c. $x^{2} \equiv 3$

3a. If a whole number n is divisible by 11 , then $n \equiv$ what number $\bmod 11$?
b. Try reducing mod 11 to see if 11 evenly divides this number: $243=2 \times 10^{2}+4 \times 10+3$.
c. Can you change one digit of 243 so that 11 does divide it?
d. Find a simple rule with the digits of a number (similar to the Rule of 3) to decide whether 11 divides evenly or not.

