\qquad

Proposition: Let G be a connected graph containing a cycle C with edge $e=x y$, so $e \subset C \subset G$. Then the graph $G-e$, removing e but keeping vertices x, y, is connected.

Sketch a proof, first writing the hypothesis at the top and the conclusion at the bottom, with their definitions. Notation: let $C=x e y Q x$, from x along e to y, then along path Q back to x.

Informal argument: We need to show any two vertices v, w are connected in $G-e$. There is a path $v P w$ in G, which might contain the edge $e=x y$ in C. In that case, avoid e by going the other way around C, getting a new path which connects v to w in $G-e$.

Formal proof: By hypothesis, assume that G is a connected graph, meaning any vertices v, w are connected by a path $v P w \subset G$. Also, G contains a cycle of the form $C=x e y Q x$, where $e=x y$ is an edge and $y Q x$ is a path not containing e. Let $G-e$ be the graph with the same vertices as G but missing edge e.

Since G is connected, any two vertices v, w are connected by some path $v P w$ in G. If P does not contain e, then $P^{\prime}=P$ is a path $v P^{\prime} w \subset G-e$.

If P does contain $e=x y$, we may write it as $v P_{1} x e y P_{2} w$, and construct

$$
R=v P_{1} x Q y P_{2} w
$$

the walk from v along P to x, then around Q to y, continuing along P to w. By definition, the path P and the cycle C can use e only once, so the path segments $v P x, x Q y, y P w$ cannot contain e. Thus R is a walk in $G-e$ connecting v, w, and we can cut it down to a path $v P^{\prime} w \subset G-e$.

Either way, arbitrary vertices v, w are connected by $v P^{\prime} w$ in $G-e$, so it is a connected graph.

