\qquad

1. Define the distance between vertices in a connected graph: dist (v, w) means \ldots ?

Solution: For vertices v, w in a graph G, the distance $\operatorname{dist}(v, w)$ is the minimum number of edges in a path from v to w inside G, i.e. the length of a shortest path $v P w \subset G$.

Note: We could also say "minumum number of edges in a walk", since the shortest walk is always a path (no repeat vertices).
2. TRUE OR FALSE: For any distinct vertices x, y, z in a connected graph,

$$
\operatorname{dist}(x, z)=\operatorname{dist}(x, y)+\operatorname{dist}(y, z)
$$

Solution: False. A counterexample is the complete graph K_{3} with vertices $V=\{x, y, z\}$, having $\operatorname{dist}(x, y)=\operatorname{dist}(x, z)=\operatorname{dist}(y, z)=1$, but $1 \neq 1+1$.
3. TRUE OR FALSE: For any distinct vertices x, y, z in a connected graph,

$$
\operatorname{dist}(x, z) \leq \operatorname{dist}(x, y)+\operatorname{dist}(y, z)
$$

Solution: True. Informally, a shortest path from x to y joined to a shortest path from y to z is a walk from x to z with $\operatorname{dist}(x, y)+\operatorname{dist}(y, z)$ edges, and the shortest $x z$-walk (or path), having $\operatorname{dist}(x, z)$ edges, cannot be longer than this.

Formal proof: Let $x P y$ and $y Q z$ be shortest paths. Then their concatenation $x P y Q z$ is a walk from x to z of length $\operatorname{dist}(x, y)+\operatorname{dist}(y, z)$. This is not necessarily a path, since Q might cross or backtrack P; however, we know that any walk can be cut down to a path with the same endpoints by skipping any loops. Thus there exists a path from x to z of length at most $\operatorname{dist}(x, y)+\operatorname{dist}(y, z)$, and a shortest path of length $\operatorname{dist}(x, z)$ cannot be longer than this.

Note: This remains true for a disconnected graph, in which some distances can be infinte: if $\operatorname{dist}(x, z)=\infty$, then $\operatorname{dist}(x, y)$ or $\operatorname{dist}(y, z)$ must be ∞.

