\qquad
question: A menu offers $\$ 1$ Fries, $\$ 2$ Hamburger, $\$ 2$ Shake. How many ways to spend $\$ 10$?
EXAMPLE: Buy $4 \mathrm{~F}, 1 \mathrm{H}, 2 \mathrm{~S}$, for a total of $4(\$ 1)+1(\$ 2)+2(\$ 2)=\$ 10$.
Solve this using the Method of Generating Functions, as follows.
Step 0: Generalize to a family of problems $a_{0}, a_{1}, a_{2}, \ldots$

Solution: a_{k} counts the number of ways to spend $\$ k$.

Step 1: Write a logical algorithm to produce the objects any size, and translate this into a product formula for the generating function $f(x)=\sum_{k \geq 0} a_{k} x^{k}$. Solution:
$\binom{$ buy any }{ amount }$\Longleftrightarrow(0 F$ or $1 F$ or $2 F$ or $\cdots) \&(0 H$ or $1 H$ or $2 H$ or $\cdots) \&(0 S$ or $1 S$ or $2 S$ or $\cdots)$
Using the logic/algebra dictionary, each choice of items costing $\$ m$ is replaced with x^{m} :

$$
\begin{aligned}
f(x) & =\left(1+x+x^{2}+\cdots\right) \cdot\left(1+x^{2}+x^{4}+\cdots\right) \cdot\left(1+x^{2}+x^{4}+\cdots\right) \\
& =\frac{1}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{2}}=\frac{1}{(1-x)\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

Step 2: Use known series to find the Taylor series of $f(x)$. Give an explicit formula for a_{k}. Hints: $\frac{1}{1-x}=\frac{(1+x)}{(1-x)(1+x)}=\frac{1+x}{1-x^{2}}$. Also $\left.\frac{1}{(1-z)^{n}}=\sum_{k \geq 0}\binom{n}{k}\right) z^{k}$, where z is any quantity.

Solution: It is difficult to expand $f(x)$ as a product of known series. We would like to reduce the denominator to be a power of a single binomial $(1-z)^{n}$.

$$
\begin{aligned}
f(x) & =\frac{1}{(1-x)} \frac{1}{\left(1-x^{2}\right)^{2}}=\frac{(1+x)}{(1+x)(1-x)} \frac{1}{\left(1-x^{2}\right)^{2}} \\
& =\frac{1+x}{\left(1-x^{2}\right)} \frac{1}{\left(1-x^{2}\right)^{2}}=(1+x) \frac{1}{\left(1-x^{2}\right)^{3}} \\
& =(1+x) \sum_{k \geq 0}\left(\binom{3}{k}\right)\left(x^{2}\right)^{k}=\sum_{k \geq 0}\left(\binom{3}{k}\right) x^{2 k}+\left(\binom{3}{k}\right) x^{2 k+1}
\end{aligned}
$$

Thus the coefficients of the even terms $x^{2 k}$ and the odd terms $x^{2 k+1}$ are:

$$
a_{2 k}=a_{2 k+1}=\left(\binom{3}{k}\right)=\binom{k+2}{k}=\binom{k+2}{2}=\frac{1}{2}(k+1)(k+2) .
$$

In particular, for $k=5$ we have $a_{10}=\frac{1}{2}(6)(7)=21$, so there are 21 ways to spend $\$ 10$.

