Here is a model proof of a combinatorial identity using bijection (transformation).
Proposition: The following identity holds for natural numbers $n \geq k \geq 1$:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Proof: To give a bijective proof, we establish that the two sides of the identity naturally count certain sets \mathcal{A}, \mathcal{B}, and we give an invertible mapping $T: \mathcal{A} \xrightarrow{\sim} \mathcal{B}$.

By definition, the left side $\binom{n}{k}$ counts the k-element subsets of $[n]=\{1,2, \ldots, n\}$:

$$
\mathcal{A}=\{S \subset[n] \text { with }|S|=k\}
$$

The right side $\binom{n-1}{k}+\binom{n-1}{k-1}$ counts subsets of $[n-1]$ with $k-1$ or k elements:

$$
\mathcal{B}=\left\{S^{\prime} \subset[n-1] \text { with }\left|S^{\prime}\right|=k \text { or } k-1\right\} .
$$

Define the Deletion Transform $T: \mathcal{A} \rightarrow \mathcal{B}$ by:

$$
T(S)=S^{\prime}=S \backslash\{n\}=\{s \in S \text { with } s \neq n\}
$$

Note that if $n \in S$, then $\left|S^{\prime}\right|=|S|-1=k-1$, while if $n \notin S$, then $S^{\prime}=S$ and $\left|S^{\prime}\right|=k$; in either case, $S^{\prime} \in \mathcal{B}$. The inverse is the Insertion Transform $T^{\prime}: \mathcal{B} \rightarrow \mathcal{A}$,

$$
T^{\prime}\left(S^{\prime}\right)=\left\{\begin{array}{cl}
S^{\prime} \cup\{n\} & \text { if }\left|S^{\prime}\right|=k-1 \\
S^{\prime} & \text { if }\left|S^{\prime}\right|=k .
\end{array}\right.
$$

We check that these are inverse, undoing each other. For $n \in S \subset[n]$ we have

$$
T^{\prime}(T(S))=T^{\prime}(S \backslash\{n\})=(S \backslash\{n\}) \cup\{n\}=S
$$

while for $n \notin S$ we have $T^{\prime}(T(S))=T^{\prime}(S)=S$. Conversely, for $S^{\prime} \subset[n-1]$ with $\left|S^{\prime}\right|=k-1$, we have

$$
T\left(T^{\prime}\left(S^{\prime}\right)\right)=T\left(S^{\prime} \cup\{n\}\right)=\left(S^{\prime} \cup\{n\}\right) \backslash\{n\}=S^{\prime}
$$

while for $\left|S^{\prime}\right|=k$ we have $T\left(T^{\prime}\left(S^{\prime}\right)\right)=T\left(S^{\prime}\right)=S^{\prime}$. Thus T has inverse T^{\prime}.
Therefore the Transformation Principle implies $|\mathcal{A}|=|\mathcal{B}|$, and:

$$
\binom{n}{k}=|\mathcal{A}|=|\mathcal{B}|=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

