Math 481 Midterm Review Problems Oct 2021

1. There are 100 runners in the state athletic division. Count how many possible results in each case below.

a. They all run a race, and we rank all runners in order of finishing. Ans: 100!

b. In the race, we rank only the top 10 runners in order, ignoring the rest. Ans: 100^{10}

c. We choose a State Team of 10 runners. Ans: $\binom{100}{10}$

d. Choose a State Team of 10 runners, including captain and vice-captain. Ans: $\binom{100}{10}10^2$ **e.** We distribute 10 named awards (A award, B award,...) among the 100 runners, where each runner can receive multiple awards. Ans: 100^{10} . Choose who gets each award.

f. We distribute 10 named awards among the 100 runners, where each runner can receive at most one award. Ans: 100^{10} . Equivalent to (b).

2. We have 10 books to arrange on 4 shelves. Count how many possible arrangements in each case below.

a. 10 identical notebooks. Example: NNNNN, NN, none, NNN. Ans: $\begin{pmatrix} 4\\10 \end{pmatrix}$

b. 5 blue notebooks, 5 red notebooks. Example: BRRBR, BB, none, BRR.

Hint: Arrange 10 blank N's, then replace 5 of them by R's, the rest by B's. Ans: $\binom{4}{10}\binom{10}{5}$ **c.** 10 distinct novels A, B, ..., J. Example: BJFCH, DA, none, EIG

Hint: Arrange 10 blank notebooks, then replace with a sequence of novels. Ans: $\binom{4}{10}$ 10!

d. 10 novels arranged alphabetically on each shelf. Example: BCFHJ, AD, none, EGI.

Hint: Place A on a shelf, then B, etc. How many choices for each? Ans: 4^{10}

3. Arrange 10 novels on 4 shelves, alphabetically on each shelf, with *no empty shelves*. Example: BCFHJ, D, A, EGI. Solve this by PIE.

a. Define a set of all arrangements A, and four sets of bad arrangements B_1, \ldots, B_4 .

b. Apply the PIE formula and compute the terms. Ans: $4^{10} - \binom{4}{1}3^{10} + \binom{4}{2}2^{10} - \binom{4}{3}1^{10}$

4. Problem: There are one million numbers from 0 to 999,999. How many have digit sum equal to 27? Example: The number 67,338 has sum 6+7+3+3+8=27.

Solve this problem by the Method of Generating Functions.

a. Step 0: Generalize to a family of counting problems with answers a_0, a_1, a_2, \ldots , so that the original problem is a_{27} . That is, a_k counts the number of \ldots .

b. Step 1: Find a simple expression for $f(x) = \sum_{k\geq 0} a_k x^k$. Write an algorithm to select 6 digits, translate it into an expression for f(x), and simplify using geometric series.

c. Step 2: Explicitly find the Taylor series for f(x) using our knowledge of functions. *Hint:* Use binomial and negative binomial series, collect all x^{27} terms, and find a_{27} . *Ans:*

$$f(x) = (x^{0} + x^{1} + \dots + x^{9})^{6} = \left(\frac{1 - x^{10}}{1 - x}\right)^{6} = (1 - x^{10})^{6} \frac{1}{(1 - x)^{6}}$$
$$a_{27} = \begin{pmatrix} 6\\0 \end{pmatrix} \left(\begin{pmatrix} 6\\27 \end{pmatrix} \right) - \begin{pmatrix} 6\\1 \end{pmatrix} \left(\begin{pmatrix} 6\\17 \end{pmatrix} \right) + \begin{pmatrix} 6\\2 \end{pmatrix} \left(\begin{pmatrix} 6\\7 \end{pmatrix} \right)$$