1. There are 100 runners in the state athletic division. Count how many possible results in each case below.
a. They all run a race, and we rank all runners in order of finishing. Ans: 100!
b. In the race, we rank only the top 10 runners in order, ignoring the rest. Ans: $100^{\underline{10}}$
c. We choose a State Team of 10 runners. Ans: $\binom{100}{10}$
d. Choose a State Team of 10 runners, including captain and vice-captain. Ans: $\binom{100}{10} 10^{\underline{2}}$ e. We distribute 10 named awards (A award, B award,...) among the 100 runners, where each runner can receive multiple awards. Ans: 100^{10}. Choose who gets each award.
f. We distribute 10 named awards among the 100 runners, where each runner can receive at most one award. Ans: 100⒑ Equivalent to (b).
2. We have 10 books to arrange on 4 shelves. Count how many possible arrangements in each case below.
a. 10 identical notebooks. Example: NNNNN, NN, none, NNN. Ans: ($\binom{4}{10}$
b. 5 blue notebooks, 5 red notebooks. Example: BRRBR, BB, none, BRR.

Hint: Arrange 10 blank N's, then replace 5 of them by R's, the rest by B's. Ans: $\binom{4}{10}\binom{10}{5}$ c. 10 distinct novels A, B, ..., J. Example: BJFCH, DA, none, EIG

Hint: Arrange 10 blank notebooks, then replace with a sequence of novels. Ans: $\binom{4}{10}$ 10!
d. 10 novels arranged alphabetically on each shelf. Example: BCFHJ, AD, none, EGI.

Hint: Place A on a shelf, then B, etc. How many choices for each? Ans: 4^{10}
3. Arrange 10 novels on 4 shelves, alphabetically on each shelf, with no empty shelves. Example: BCFHJ, D, A, EGI. Solve this by PIE.
a. Define a set of all arrangements A, and four sets of bad arrangements B_{1}, \ldots, B_{4}.
b. Apply the PIE formula and compute the terms. Ans: $4^{10}-\binom{4}{1} 3^{10}+\binom{4}{2} 2^{10}-\binom{4}{3} 1^{10}$
4. Problem: There are one million numbers from 0 to 999,999 . How many have digit sum equal to 27 ? Example: The number 67,338 has sum $6+7+3+3+8=27$.
Solve this problem by the Method of Generating Functions.
a. Step 0: Generalize to a family of counting problems with answers $a_{0}, a_{1}, a_{2}, \ldots$, so that the original problem is a_{27}. That is, a_{k} counts the number of \ldots.
b. Step 1: Find a simple expression for $f(x)=\sum_{k \geq 0} a_{k} x^{k}$. Write an algorithm to select 6 digits, translate it into an expression for $f(x)$, and simplify using geometric series.
c. Step 2: Explicitly find the Taylor series for $f(x)$ using our knowledge of functions.

Hint: Use binomial and negative binomial series, collect all x^{27} terms, and find a_{27}.
Ans:

$$
\begin{gathered}
f(x)=\left(x^{0}+x^{1}+\cdots+x^{9}\right)^{6}=\left(\frac{1-x^{10}}{1-x}\right)^{6}=\left(1-x^{10}\right)^{6} \frac{1}{(1-x)^{6}} \\
a_{27}=\binom{6}{0}\left(\binom{6}{27}\right)-\binom{6}{1}\left(\binom{6}{17}\right)+\binom{6}{2}\left(\binom{6}{7}\right)
\end{gathered}
$$

