Proposition. The following identity holds for any whole number n :

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

1. Write out Pascal's Triangle with all the numbers $\binom{m}{k}$ up to $m=8$. Use this to check the above identity for $n=0,1,2,3,4$ by direct computation.
2. To set up a transformation proof, we must describe each side of the equation as naturally counting some class of combinatorial objects. By definition, the left side $\binom{2 n}{n}$ is the number of subsets S of n elements inside [2n]. ${ }^{1}$
The right side is more complicated: it is the set of pairs of subsets $\left(S_{1}, S_{2}\right)$, both with the same number of elements, and both inside $[n]$.

Problem: Explain why this counts the right side, using the Sum and Product Principles. (The summation is over all k for which $\binom{n}{k}$ makes sense, so think of k as an arbitrary size.)
3. For $n=3$, write down all $\binom{6}{3}=20$ sets $S \subset[6]$ in one column, and all the pairs $\left(S_{1}, S_{2}\right)$ in another column. Find a natural way to transform the 3-element set S into two sets $S_{1}, S_{2} \subset[3]$ of equal size, in a reversible way that does not lose any data. Show this transformation by drawing lines connecting the items on the left and right.
Hint: Start by splitting $S=S_{1} \cup S_{2}^{\prime}$ into the parts lying in the lower and upper halves of [6] $=\{1,2,3\} \cup\{4,5,6\}$. Here S_{2}^{\prime} is not in [3] and doesn't have the same size as S_{1}, so you have to do more transforming to get S_{2}.
4. Define the above transformation for any n using set notation. Start with

$$
[2 n]=[1, n] \cup[n+1,2 n],
$$

and construct S_{1} and S_{2} from S using set operations \cup, \cap, \backslash, and also the shift operation $S+m=\{s+m$ for $s \in S\}$. (Be careful to distinguish the operation $S \backslash\{m\}$ removing m, versus $S-m$ shifting down by m.)

Also define S_{1}, S_{2} in terms of set-builder notation, giving precise conditions for the elements of each set: $S_{1}=\{s \in[n]$ with $\ldots\}$, etc.
5. Define the reverse transform or inverse mapping, showing how to combine S_{1}, S_{2} to recover S. Again use set operations, then also set-builder notation.

Note: These transforms prove the identity by the Transformation Principle.

[^0]
[^0]: ${ }^{1}$ Notation: $[m]=\{1,2, \ldots, m\}$ and $[\ell, m]=\{\ell, \ell+1, \ldots, m-1, m\}$.

