A linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a mapping compatible with vector addition and scalar multiplication, meaning for any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and scalars $s, t \in \mathbb{R}$, we have:

$$
L(s \mathbf{u}+t \mathbf{v})=s L(\mathbf{u})+t L(\mathbf{v})
$$

For $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, this means L is specified by the two outputs $L(\mathbf{i})=$ $L(1,0)=(a, b)$ and $L(\mathbf{j})=L(0,1)=(c, d)$. For a general vector $(x, y)=$ $x(1,0)+y(0,1)$, we have:

$$
L(x, y)=x(a, b)+y(c, d)=(a x+c y, b x+d y)
$$

so that a, b, c, d are slope coefficients, which we write in a 2×2 matrix:

$$
[L]=\left[\begin{array}{l|l}
a & c \\
b & d
\end{array}\right]
$$

When computing with matrices, we usually write a vector $\mathbf{v}=(x, y)$ in column form as $[\mathbf{v}]=\left[\begin{array}{l}x \\ y\end{array}\right]$. We define multiplication of the matrix $[L]$ times the vector $[\mathbf{v}]$ so that it produces the above output: $[L] \cdot[\mathbf{v}] \stackrel{\text { def }}{=}[L(\mathbf{v})]$:

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] \stackrel{\text { def }}{=}\left[\begin{array}{l}
a x+c y \\
b x+d y
\end{array}\right]=\left[\begin{array}{l}
(a, c) \cdot(x, y) \\
(b, d) \cdot(x, y)
\end{array}\right] .
$$

Thus, matrix multiplication takes dot products of row vectors of $[L]$ with \mathbf{v}.

Problems

1. For two linear mappings $L_{1}, L_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the composite function $L_{3}=$ $L_{1} \circ L_{2}$ is defined by $L_{3}(\mathbf{v})=L_{1}\left(L_{2}(\mathbf{v})\right)$. Prove L_{3} is a linear mapping.
2. Given the matrices:

$$
\left[L_{1}\right]=\left[\begin{array}{l|l}
a_{1} & c_{1} \\
b_{1} & d_{1}
\end{array}\right], \quad\left[L_{2}\right]=\left[\begin{array}{l|l}
a_{2} & c_{2} \\
b_{2} & d_{2}
\end{array}\right]
$$

compute $L_{2}(x, y)$ and input the result into $L_{1}(x, y)$ to find the composite $L_{3}(x, y)=L_{1}\left(L_{2}(x, y)\right)$. Determine its slope coefficients to find the matrix $\left[L_{3}\right]$, which we define as the matrix product: $\left[L_{1}\right] \cdot\left[L_{2}\right] \stackrel{\text { def }}{=}\left[L_{3}\right]$.

As before, interpret each entry of $\left[L_{3}\right]$ as a dot product of certain row and column vectors of $\left[L_{1}\right]$ and $\left[L_{2}\right]$.
3. Write the matrix of a general plane rotation $R=\operatorname{Rot}_{\theta}$, counterclockwise by angle θ as well as an explicit formula for $R(x, y)$. Hint: Find $R(1,0)$ and $(0,1)$ by trigonometry, then compute $R(x, y)=R(\mathbf{v})=[R] \cdot[\mathbf{v}]$.
4. Compute the matrix of the composite mapping $\operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}$, and interpret it geometrically as a known linear mapping.
5. Let $\mathbf{u}_{\theta}=(\cos (\theta), \sin (\theta))$ be the unit vector with angle θ from the x-axis. Let $\operatorname{Ref}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection of the plane which flips \mathbf{u}_{θ} across the line perpendicular to \mathbf{u}_{θ}. (This is called an orthogonal reflection since the flipped and fixed lines are perpendicluar.)
Problem: Find the matrix of $\operatorname{Ref}_{\theta}$.
Hint: Recall that $\operatorname{Ref}_{\theta}(\mathbf{v})=\mathbf{v}-2 \mathbf{p}$, where \mathbf{p} is the orthogonal projection of \mathbf{v} onto the direction \mathbf{u}_{θ}.
6. Find the matrix of the composite mapping $\operatorname{Ref}_{\alpha} \circ \operatorname{Ref}_{\beta}$, and interpret it geometrically as a known linear mapping.
7. Fix a unit vector $\mathbf{m}=\left(m_{1}, m_{2}\right)$ with $|\mathbf{m}|=1$, and consider the mappings $\ell_{1}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ and $\ell_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $\ell_{1}(t)=\mathbf{m} t$ and $\ell_{2}(\mathbf{v})=\mathbf{m} \cdot \mathbf{v}$.
a. Compute a formula for the composite $\ell_{3}(\mathbf{v})=\ell_{1}\left(\ell_{2}(\mathbf{v})\right)$.
b. Re-do this by multiplying matrices: $\left[\ell_{3}\right]=\left[\ell_{1}\right] \cdot\left[\ell_{2}\right]$.
c. Interpret $\ell_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ geometrically as a known linear mapping.

Hint: Picture the effect of ℓ_{2} followed by ℓ_{1}, applied to an input vector \mathbf{v}.

