Math 254H Weekly Homework 2 Fall 2022

A linear mapping $L : \mathbb{R}^n \to \mathbb{R}^m$ is a mapping compatible with vector addition and scalar multiplication, meaning for any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and scalars $s, t \in \mathbb{R}$, we have:

$$L(s\mathbf{u} + t\mathbf{v}) = s L(\mathbf{u}) + t L(\mathbf{v}).$$

For $L : \mathbb{R}^2 \to \mathbb{R}^2$, this means L is specified by the two outputs $L(\mathbf{i}) = L(1,0) = (a,b)$ and $L(\mathbf{j}) = L(0,1) = (c,d)$. For a general vector (x,y) = x(1,0) + y(0,1), we have:

$$L(x,y) = x(a,b) + y(c,d) = (ax+cy, bx+dy)$$

so that a, b, c, d are slope coefficients, which we write in a 2×2 matrix:

$$\begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}.$$

When computing with matrices, we usually write a vector $\mathbf{v} = (x, y)$ in column form as $[\mathbf{v}] = \begin{bmatrix} x \\ y \end{bmatrix}$. We define multiplication of the matrix [L] times the vector $[\mathbf{v}]$ so that it produces the above output: $[L] \cdot [\mathbf{v}] \stackrel{\text{def}}{=} [L(\mathbf{v})]$:

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} ax + cy \\ bx + dy \end{bmatrix} = \begin{bmatrix} (a, c) \cdot (x, y) \\ (b, d) \cdot (x, y) \end{bmatrix}$$

Thus, matrix multiplication takes dot products of row vectors of [L] with **v**.

Problems

1. For two linear mappings $L_1, L_2 : \mathbb{R}^2 \to \mathbb{R}^2$, the composite function $L_3 = L_1 \circ L_2$ is defined by $L_3(\mathbf{v}) = L_1(L_2(\mathbf{v}))$. Prove L_3 is a linear mapping.

2. Given the matrices:

$$\begin{bmatrix} L_1 \end{bmatrix} = \begin{bmatrix} a_1 & c_1 \\ b_1 & d_1 \end{bmatrix}, \quad \begin{bmatrix} L_2 \end{bmatrix} = \begin{bmatrix} a_2 & c_2 \\ b_2 & d_2 \end{bmatrix},$$

compute $L_2(x, y)$ and input the result into $L_1(x, y)$ to find the composite $L_3(x, y) = L_1(L_2(x, y))$. Determine its slope coefficients to find the matrix $[L_3]$, which we define as the *matrix product*: $[L_1] \cdot [L_2] \stackrel{\text{def}}{=} [L_3]$.

As before, interpret each entry of $[L_3]$ as a dot product of certain row and column vectors of $[L_1]$ and $[L_2]$.

3. Write the matrix of a general plane rotation $R = \operatorname{Rot}_{\theta}$, counterclockwise by angle θ as well as an explicit formula for R(x, y). *Hint:* Find R(1, 0) and (0, 1) by trigonometry, then compute $R(x, y) = R(\mathbf{v}) = [R] \cdot [\mathbf{v}]$.

4. Compute the matrix of the composite mapping $\operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}$, and interpret it geometrically as a known linear mapping.

5. Let $\mathbf{u}_{\theta} = (\cos(\theta), \sin(\theta))$ be the unit vector with angle θ from the *x*-axis. Let $\operatorname{Ref}_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection of the plane which flips \mathbf{u}_{θ} across the line perpendicular to \mathbf{u}_{θ} . (This is called an *orthogonal reflection* since the flipped and fixed lines are perpendicular.)

Problem: Find the matrix of $\operatorname{Ref}_{\theta}$.

Hint: Recall that $\operatorname{Ref}_{\theta}(\mathbf{v}) = \mathbf{v} - 2\mathbf{p}$, where \mathbf{p} is the orthogonal projection of \mathbf{v} onto the direction \mathbf{u}_{θ} .

6. Find the matrix of the composite mapping $\operatorname{Ref}_{\alpha} \circ \operatorname{Ref}_{\beta}$, and interpret it geometrically as a known linear mapping.

7. Fix a unit vector $\mathbf{m} = (m_1, m_2)$ with $|\mathbf{m}| = 1$, and consider the mappings $\ell_1 : \mathbb{R} \to \mathbb{R}^2$ and $\ell_2 : \mathbb{R}^2 \to \mathbb{R}$ given by $\ell_1(t) = \mathbf{m} t$ and $\ell_2(\mathbf{v}) = \mathbf{m} \cdot \mathbf{v}$.

a. Compute a formula for the composite $\ell_3(\mathbf{v}) = \ell_1(\ell_2(\mathbf{v}))$.

b. Re-do this by multiplying matrices: $[\ell_3] = [\ell_1] \cdot [\ell_2]$.

c. Interpret $\ell_3 : \mathbb{R}^2 \to \mathbb{R}^2$ geometrically as a known linear mapping.

Hint: Picture the effect of ℓ_2 followed by ℓ_1 , applied to an input vector **v**.