1. The Conservative Vector Field Theorem is only the degree 1 case of a more general result, the Poincare Lemma for differential forms. Here we prove the degree 2 case.

Vector Potential Theorem. For a differentiable vector field $\mathbf{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, the following conditions are equivalent.
(i) Vector potential: $\mathbf{G}=\operatorname{curl} \mathbf{F}$ for some vector field \mathbf{F}.
(ii) Surface independent. The flux of \mathbf{G} enclosed by a loop does not depend on the surface chosen across the loop:

$$
\iint_{S_{1}} \mathbf{G} \cdot d \mathbf{n}_{1}=\iint_{S_{2}} \mathbf{G} \cdot d \mathbf{n}_{2},
$$

where S_{1}, S_{2} are two oriented surfaces with the same boundary curve. ${ }^{1}$
(iii) Flux free. For any closed surface S :

$$
\oiint_{S} \mathbf{G} \cdot d \mathbf{n}=0 .
$$

(iv) Incompressible: $\operatorname{div} \mathbf{G}=0$ everywhere.

Problem: Prove the following implications in analogy with the corresponding proofs for the Conservative Vector Field Theorem. Explicitly quote previous theorems used.

$$
(\mathrm{i}) \Rightarrow(\mathrm{ii}), \quad(\mathrm{ii}) \Rightarrow(\mathrm{iii}), \quad(\mathrm{iii}) \Rightarrow(\mathrm{iv}), \quad(\mathrm{iv}) \Rightarrow(\mathrm{iii})
$$

I am not asking you to prove the remaining implications (iii) \Rightarrow (ii) \Rightarrow (i).
2. Consider the electric field \mathbf{E} of uniform charge along an axis defined by the unit vector ℓ, and its potential energy function ϕ :

$$
\mathbf{E}(\mathbf{v})=\frac{\mathbf{v}_{\perp \ell}}{\left|\mathbf{v}_{\perp \ell}\right|^{2}}, \quad \phi(\mathbf{v})=-\ln \left|\mathbf{v}_{\perp \ell}\right|
$$

Here $\mathbf{v}_{\perp \ell}$ is the component of \mathbf{v} perpendicular to the unit vector ℓ.
a. Verify that $\nabla \phi=-\mathbf{E}$ using vector calculus identities below, as well as the projection formula for $\mathbf{v}_{\perp \ell}$. Remember $\ell \cdot \ell=1$.
b. Show \mathbf{E} can be obtained as the integral of point-charge fields along the axis with constant charge density $\frac{1}{2}$:

$$
\mathbf{E}(\mathbf{v})=\int_{t=-\infty}^{\infty} \frac{1}{2} \frac{\mathbf{v}-t \ell}{|\mathbf{v}-t \ell|^{3}} d t
$$

Hints: $\int_{a}^{b} f(t) \mathbf{v} d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{v}$ for a constant vector \mathbf{v}, and $|\mathbf{v}-t \ell|=\sqrt{t^{2}-2(\mathbf{v} \cdot \ell) t+|\mathbf{v}|^{2}}=\sqrt{u^{2}+c^{2}}$

$$
\text { for } u=t-(\mathbf{v} \cdot \ell) \text { and } c^{2}=|\mathbf{v}|^{2}-(\mathbf{v} \cdot \ell)^{2}=\left|\mathbf{v}_{\perp \ell}\right|^{2} \geq 0
$$

[^0]3. Consider the magnetic field \mathbf{B} defined with respect to a unit vector ℓ, and its vector potential \mathbf{A} :
$$
\mathbf{B}(\mathbf{v})=\ell \times \mathbf{v}, \quad \mathbf{A}(\mathbf{v})=-\frac{1}{2}\left|\mathbf{v}_{\perp \ell}\right|^{2} \ell .
$$
a. Sketch \mathbf{B}, starting at a point on the axis $\mathbf{v}=t \ell$, then on circles $\mathbf{v}=t \ell+\mathbf{v}_{\perp \ell}$ with $\left|\mathbf{v}_{\perp \ell}\right|=1,2, \ldots$. Separately sketch \mathbf{A}, and explain visually why curl $\mathbf{A}=\mathbf{B}$.
b. Show that $\operatorname{div} \mathbf{B}=0$ everywhere.
c. Show that curl $\mathbf{A}=\mathbf{B}$.
d. By Ampere's Law, what current field \mathbf{J} would induce the static magnetic field \mathbf{B} ?

Vector Calculus Identities for scalar functions $f(\mathbf{v}), g(\mathbf{v})$ and vector fields $\mathbf{F}(\mathbf{v}), \mathbf{G}(\mathbf{v})$.

- $\nabla(\ell \cdot \mathbf{v})=\ell, \quad \nabla\left(|\mathbf{v}|^{2}\right)=2 \mathbf{v}$
- $\operatorname{curl}(\mathbf{v})=\mathbf{0}, \quad \operatorname{div}(\mathbf{v})=3$
- $\nabla\left(f(g(\mathbf{v}))=f^{\prime}(g(\mathbf{v})) \nabla g(\mathbf{v})\right.$, for $f: \mathbb{R} \rightarrow \mathbb{R}$
- $\nabla(f g)=(\nabla f) g+f \nabla g$
- $\operatorname{div}(f \mathbf{G})=\nabla \cdot(f \mathbf{G})=(\nabla f) \cdot \mathbf{G}+f \nabla \cdot \mathbf{G}$
- $\operatorname{div}(\mathbf{F} \times \mathbf{G})=\nabla \cdot(\mathbf{F} \times \mathbf{G})=(\nabla \times \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\nabla \times \mathbf{G})$
- $\operatorname{curl}(f \mathbf{G})=\nabla \times(f \mathbf{G})=\nabla f \times \mathbf{G}+f \nabla \times \mathbf{G}$

[^0]: ${ }^{1}$ Orientation means a choice of "upward" normal \mathbf{n}, inducing counter-clockwise boundary $\mathbf{c}(t)$.

