
Math 254H Weekly Homework 8 Fall 2022

Euler’s Method is the most basic numerical method for solving differential equations,
such as those which appear in natural science. Consider an equation satisfied by an
unknown function y = y(t):

dy

dt
= f(t, y) or y′(t) = f(t, y(t)),

where f(t, y) is a given smooth function, along with a known initial value y(0). The
Picard-Lindelof Theorem guarantees a unique solution y(t), which can be approxi-
mated as follows.

We fix a time increment ∆t, and from y(0) we recursively compute approximate
values y(∆t), y(2∆t), y(3∆t), . . . . Given y(t) at the current point, we step to the
next point by following the tangent line from (t, y(t)):

y(t+∆t) ≈ y(t) + y′(t)∆t = y(t) + f(t, y(t))∆t.

For smaller and smaller ∆t → 0, the approximatie solutions y(t) converge to the
exact solution of the equation y′(t) = f(t, y(t)).

1. The logistic equation describes the growth of a self-reproducting population which
is constrained by a maximum environmental capacity y = 1:

dy

dt
= y(1− y).

a. Explain why this equation describes roughly exponential growth when the popu-
lation y is small, but stalling growth as it nears the environmental capacity y = 1.
Are there any constant solutions y(t) = C?

b. Using a spreadsheet or other software, implement Euler’s Method for this equa-
tion, with the initial condition y(0) = 0.1 = 10% capacity, and graph the result. How
long does it take to reach 90% of capacity, the time t1 with y(t1) = 0.9? Experiment
with different ∆t until your estimate for t1 stabilizes to 1 decimal place.

2. Approximate y(t) = sin(t) by solving the spring equation (Hooke’s law):

y′′ = −y with y(0) = 0, y′(0) = 1.

This is a second-order differential equation of the form:

y′′ = F (y) with given y(0), y′(0).

(Since the right side does not involve t, this is an autonomous equation.) To solve,
we compute lists of both y(t) and y′(t), updating y using its slope y′, and updating
y′ using its slope (y′)′ = F (y).

a. Implement Euler’s Method, updating the pairs y(t), y′(t) for t = 0,∆t, 2∆t, . . . by:

y(t+∆t) = y(t) + y′(t) ∆t

y′(t+∆t) = y′(t) + F (y(t)) ∆t.

Graph the resulting y = y(t) over t ∈ [0, π]. How small must you take ∆t to get
y(π) ≈ sin(π) = 0.0 correct up to 1 decimal place?



b. The errors in the above method accumulate quickly. We can coax errors to cancel
each other using the Midpoint Method (or Leapfrog Method). Instead of the initial
value y′(0), we use a staggered initial value y′(∆t
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Note how each new value of y and y′ is computed using only previously known values.

problem: Implement this, adjusting ∆t to get y(t) ≈ sin(t) correct to 2 decimals.

3. Numerical planetary model. Next we consider methods for plotting the
trajectory of an object moving in the xy-plane under the inverse-square force field:

F(x, y) = (p(x, y), q(x, y)) = − (x, y)

(x2+y2)3/2
.

Letting c(t) = (x(t), y(t)) be the position at time t, and assuming the object has unit
mass, Newton’s Second Law of Motion says the acceleration is equal to the force:

c′′(t) = F(c(t)) or

{
x′′(t) = p(x(t), y(t))
y′′(t) = q(x(t), y(t)) .

To solve this system of second-order differential equations, we again use the Mid-
point Method. Given an intial position c(0) = (x(0), y(0)) and initial velocity
c′(0) = (x′(0), y′(0)), we compute the staggered initial velocity (x′(∆t
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a. Implement this, and graph the resulting trajectory for (x(0), y(0)) = (1, 0),
(x′(0), y′(0)) = (0, 0.6). (Use a scatter-plot graph of the points (x(t), y(t)), con-
nected by line segments.) Compute out for a full orbit, until (x(t), y(t)) returns to
its initial position (up to an approximation error). Adjust ∆t to get the return point
correct to at least 1 decimal place.

b. Check that the above orbit approximately obeys Kepler’s First Law of planetary
motion: that the planets orbit in ellipses with the sun at one focus. That is, check

that your orbit is approximately equal to a curve (x−c)2
a2

+ y2

b2
= 1, where 2a is the

horizontal axis of the ellipse, 2b is the vertical axis, and c =
√
a2 − b2 is the distance

from the center to the focus along the horizontal axis. Find the correct values of a, b,
and plot the graph of the ellipse together with the orbit.

c. Extra Credit: Try to spot-check Kepler’s other conclusions. Second Law: A planet
moves so its radius from the sun sweeps equal areas over equal times. Third Law:
The period of a planet’s orbit is proportional to the 3/2 power of its major axis. (You
would need to compare two different orbits for this.)


