1. Area bounded by a curve
a. Let $\vec{c}(t)=(x(t), y(t))$ for $t \in[a, b]$ be a parametric curve moving left-to-right above the x-axis, so that $x^{\prime}(t) \geq 0$ and $y(t) \geq 0$. In MTH 133, we learn that the area under $\vec{c}(t)$ and above the x-axis is $\int y d x=\int_{a}^{b} y(t) x^{\prime}(t) d t$.
Prove this formula by parametrizing the region and using the Substitution Theorem for double integrals.
b. How does the formla $\int y d x$ behave if $y<0$ or $x^{\prime}<0$ always or sometimes? What geometric quantities does it compute in the different cases?
c. Now let $\vec{c}(t)$ be a counterclockwise loop bounding a region D, with the lower half of $\vec{c}(t)$ moving left-to-right, the upper half returning right-to-left. Find a single-integral formula similar to $\int y d x$ which computes the area of D.
d. Give an example of a vector field $\mathbf{F}(x, y)$ with $\operatorname{curl} \mathbf{F}(x, y)=1$ everywhere. Apply the Curl Theorem to \mathbf{F}, D, and \vec{c} to give a formula similar to part (c), a single integral in $x(t), y(t)$ over $t \in[a, b]$ that computes enclosed area. Also, find an appropriate \mathbf{F} that proves your exact formula from part (c).
2. In Problem Sheet 16-9 below, do $\# 7,9,12$. The idea is to take consider $u=f(x, y)$ and $v=g(x, y)$ as functions whose contour lines give a parametric coordinate grid on the $x y$-plane. To invert these into a parametrization $G(u, v)=(x, y)$, solve the equations $u=f(x, y), v=g(x, y)$ for x, y.

In each of Problems $1-6$, solve for x and y in terms of u and v and then compute the Jacobian $\partial(x, y) / \partial(u, v)$.
$1 u=x+y, \quad v=x-y$
$2 u=x-2 y, \quad v=3 x+y$
$3 u=x y, \quad v=\frac{y}{x}$
$4 u=2\left(x^{2}+y^{2}\right), \quad v=2\left(x^{2}-y^{2}\right)$
$5 u=x+2 y^{2}, \quad v=x-2 y^{2}$
$6 u=\frac{2 x}{x^{2}+y^{2}}, \quad v=\frac{-2 y}{x^{2}+y^{2}}$
7 Let R be the parallelogram bounded by the lines $x+y=1, x+y=2$ and $2 x-3 y=2,2 x-3 y=5$. Substitute $u=x+y, v=2 x-3 y$ to find the area $A=\iint_{R} d x d y$ of R.
8 Substitute $u=x y, v=y / x$ to find the area of the first quadrant region bounded by the lines $y=x, y=2 x$ and the hyperbolas $x y=1, x y=2$.
9 Substitute $u=x y, v=x y^{3}$ to find the area of the region in the first quadrant bounded by the curves $x y=2, x y=4$ and $x y^{3}=3, x y^{3}=6$.
10 Find the area of the region in the first quadrant bounded by the curves $y=x^{2}, y=2 x^{2}$ and $x=y^{2}$, $x=4 y^{2}$. (Suggestion: Let $y=u x^{2}$ and $x=v y^{2}$.)
11 Use the method of Problem 10 to find the area of the region in the first quadrant bounded by the curves $y=x^{3}$, $y=2 x^{3}$ and $x=y^{3}, x=4 y^{3}$.
12 Let R be the region in the first quadrant bounded by the circles $x^{2}+y^{2}=2 x, x^{2}+y^{2}=6 x$ and the circles $x^{2}+y^{2}=2 y, x^{2}+y^{2}=8 y$. Use the transformation
$u=2 x /\left(x^{2}+y^{2}\right), v=2 y /\left(x^{2}+y^{2}\right)$ to evaluate the integral $\iint_{R}\left(x^{2}+y^{2}\right)^{-2} d x d y$.
13 Use elliptical coordinates $x=3 r \cos \theta, y=2 r \sin \theta$ to find the volume of the region that is bounded by the $x y$ plane, the paraboloid $z=x^{2}+y^{2}$, and the elliptical cylinder $x^{2} / 9+y^{2} / 4=1$.
14 Let R be the solid ellipsoid with outer boundary surface $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$. Use the transformation $x=a u, y=b v, z=c w$ to show that the volume of this . ellipsoid is $V=\iiint_{R} 1 d x d y d z=\frac{4}{3} \pi a b c$.

15 Find the volume of the region in the first octant that is bounded by the hyperbolic cylinders $x y=1, x y=4$; $x z=1, x z=9 ; y z=4, y z=9$. (Suggestion: Let $u=x y$, $v=x z, w=y z$, and note that $u v w=x^{2} y^{2} z^{2}$.)
16 Use the transformation $x=(r / t) \cos \theta, y=(r / t) \sin \theta$, ${ }^{y} z=r^{2}$ to find the volume of the region R that lies between the paraboloids $z=x^{2}+y^{2}, z=4\left(x^{2}+y^{2}\right)$ and also between the planes $z=1, z=4$.
17 Let R be the rotated elliptical region bounded by the graph of $x^{2}+x y+y^{2}=3$. Let $x=u+v$ and $y=u-v$. Show that

$$
\iint_{R} e^{-\left(x^{2}+x y+y^{2}\right)} d x d y=2 \iint_{S} e^{-\left(3 u^{2}+v^{2}\right)} d u d v
$$

Then substitute $u=r \cos \theta, v=\sqrt{3}(r \sin \theta)$ to evaluate the latter integral.
18 Derive Relation (6) between the Jacobians of a transformation and its inverse from the chain rule and the following property of determinants:

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right| \cdot\left|\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right|=\left|\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
a_{2} c_{1}+c_{2} d_{1} & b_{2} c_{1}+d_{1} d_{2}
\end{array}\right| .
$$

