1a. The projection mapping $P_{\mathbf{u}}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$ has matrix:

$$
\left[\mathrm{P}_{\mathbf{u}}\right]=\left[P_{\mathbf{u}}(\mathbf{i}) \mid P_{\mathbf{u}}(\mathbf{j})\right]=\frac{1}{u_{1}^{2}+u_{2}^{2}}\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]
$$

where the scalar next to the matrix multiplies every entry, and $|\mathbf{u}|=u_{1}^{2}+u_{2}^{2}=1$.
1b. In geometric terms, we can compute:

$$
P_{\mathbf{u}}\left(P_{\mathbf{u}}(\mathbf{v})=\frac{\left(\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}\right) \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u}} \mathbf{u} \cdot \mathbf{u}=P_{\mathbf{u}}(\mathbf{v}) .\right.
$$

Thus $\operatorname{Proj}_{\mathbf{u}} \circ \operatorname{Proj}_{\mathbf{u}}=\operatorname{Proj}_{\mathbf{u}}$, and it is geometrically clear that the second projection to direction \mathbf{u} has no effect on the already projected vectors. The product matrix is:

$$
\left[P_{\mathbf{u}}\right] \cdot\left[P_{\mathbf{u}}\right]=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{4}+u_{1}^{2} u_{2}^{2} & u_{1} u_{2}^{3}+u_{1}^{3} u_{2} \\
u_{1} u_{2}^{3}+u_{1}^{3} u_{2} & u_{1}^{2} u_{2}^{2}+u_{1}^{4}
\end{array}\right]
$$

The identity $u_{1}^{2}+u_{2}^{2}=1$ easily reduces this to the orignal matrx $\left[P_{\mathbf{u}}\right]$.
1c. Geometrically, it is clear that the composition $P_{\mathbf{u}} \circ P_{\mathbf{w}}=0$, collapsing the whole plane on the origin. This can be computed from the matrices using $\mathbf{u} \cdot \mathbf{w}=0$.
2. The matrix of a mapping $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has m rows and n columns (dimensions $m \times n$). The given mappings have matrices

$$
\left[\ell_{1}\right]=\mathbf{m}=\left[\begin{array}{ll}
m_{1} & m_{2}
\end{array}\right], \quad\left[\ell_{2}\right]=\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right]
$$

Two functions can be composed only if the output of the second function is an acceptable input of the first function; thus $\ell_{1} \circ \ell_{1}$ and $\ell_{2} \circ \ell_{2}$ are not defined.

The allowable compositions are first: $\ell_{1} \circ \ell_{2}: \mathbb{R} \rightarrow \mathbb{R}$, with

$$
\ell_{1}\left(\ell_{2}(t)\right)=\left(m_{1} a_{1}+m_{2} a_{2}\right) t=(\mathbf{m} \cdot \mathbf{a}) t
$$

which is just a multiplication mapping on \mathbb{R}. The other composition is:

$$
\left[\ell_{2} \circ \ell_{1}\right]=\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
m_{1} & m_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} m_{1} & a_{1} m_{2} \\
a_{2} m_{1} & a_{2} m_{2}
\end{array}\right]
$$

This is not very nice geometrically, but it can be thought of as projecting onto the direction $\mathbf{m}=\left(m_{1}, m_{2}\right)$, dilating by a factor of $|\mathbf{a}||\mathbf{m}|$, then rotating the direction \mathbf{m} to the direction \mathbf{a}.
3. The relation $\operatorname{Rot}_{\alpha+\beta}=\operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}$, translates into the matrix equations:

$$
\begin{aligned}
{\left[\begin{array}{rr}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right] } & =\left[\operatorname{Rot}_{\alpha+\beta}\right]=\left[\operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}\right]=\left[\operatorname{Rot}_{\alpha}\right] \cdot\left[\operatorname{Rot}_{\beta}\right] \\
& =\left[\begin{array}{rr}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right]\left[\begin{array}{rr}
\cos (\beta) & -\sin (\beta) \\
\sin (\beta) & \cos (\beta)
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) & -\cos (\alpha) \sin (\beta)-\sin (\alpha) \cos (\beta) \\
\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) & -\sin (\alpha) \sin (\beta)+\cos (\alpha) \cos (\beta)
\end{array}\right]
\end{aligned}
$$

Equating entries in the first and last matrices gives the Angle Addition Formulas.
4. Matrix multiplication seldom commutes, so $A B \neq B A$ for random 2×2 matrices A, B. An interesting geometric example is given by $A=\operatorname{Ref}_{(1,0)}$, reflection of the x-axis across the y-axis, and $B=\operatorname{Ref}_{(1,-1)}$, reflection of $(1,-1)$ across the line $y=x$:

$$
[A]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad[B]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

The product are the counterclockwise quarter-turn $A B=\operatorname{Rot}_{\pi / 2}$, and the clockwise quarter-turn $B A=\operatorname{Rot}_{-\pi / 2}$.

