Math 254H

1a. The projection mapping $P_{\mathbf{u}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$ has matrix:

$$[\mathbf{P}_{\mathbf{u}}] = [P_{\mathbf{u}}(\mathbf{i}) \mid P_{\mathbf{u}}(\mathbf{j})] = \frac{1}{u_1^2 + u_2^2} \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix},$$

where the scalar next to the matrix multiplies every entry, and $|\mathbf{u}| = u_1^2 + u_2^2 = 1$. **1b.** In geometric terms, we can compute:

$$P_{\mathbf{u}}(P_{\mathbf{u}}(\mathbf{v}) = \frac{\left(\frac{\mathbf{v}\cdot\mathbf{u}}{\mathbf{u}\cdot\mathbf{u}}\mathbf{u}\right)\cdot\mathbf{u}}{\mathbf{u}\cdot\mathbf{u}}\mathbf{u} = \frac{\mathbf{v}\cdot\mathbf{u}}{\mathbf{u}\cdot\mathbf{u}}\frac{\mathbf{u}\cdot\mathbf{u}}{\mathbf{u}\cdot\mathbf{u}}\mathbf{u} = P_{\mathbf{u}}(\mathbf{v}).$$

Thus $\operatorname{Proj}_{\mathbf{u}} \circ \operatorname{Proj}_{\mathbf{u}} = \operatorname{Proj}_{\mathbf{u}}$, and it is geometrically clear that the second projection to direction \mathbf{u} has no effect on the already projected vectors. The product matrix is:

$$[P_{\mathbf{u}}] \cdot [P_{\mathbf{u}}] = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} \cdot \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} = \begin{bmatrix} u_1^4 + u_1^2 u_2^2 & u_1 u_2^3 + u_1^3 u_2 \\ u_1 u_2^3 + u_1^3 u_2 & u_1^2 u_2^2 + u_1^4 \end{bmatrix}$$

The identity $u_1^2 + u_2^2 = 1$ easily reduces this to the orignal matrix $[P_{\mathbf{u}}]$.

1c. Geometrically, it is clear that the composition $P_{\mathbf{u}} \circ P_{\mathbf{w}} = 0$, collapsing the whole plane on the origin. This can be computed from the matrices using $\mathbf{u} \cdot \mathbf{w} = 0$.

2. The matrix of a mapping $\ell : \mathbb{R}^n \to \mathbb{R}^m$ has *m* rows and *n* columns (dimensions $m \times n$). The given mappings have matrices

$$[\ell_1] = \mathbf{m} = [m_1 \ m_2], \qquad [\ell_2] = \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}.$$

Two functions can be composed only if the output of the second function is an acceptable input of the first function; thus $\ell_1 \circ \ell_1$ and $\ell_2 \circ \ell_2$ are not defined.

The allowable compositions are first: $\ell_1 \circ \ell_2 : \mathbb{R} \to \mathbb{R}$, with

$$\ell_1(\ell_2(t)) = (m_1 a_1 + m_2 a_2) t = (\mathbf{m} \cdot \mathbf{a}) t ,$$

which is just a multiplication mapping on \mathbb{R} . The other composition is:

$$\begin{bmatrix} \ell_2 \circ \ell_1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \cdot \begin{bmatrix} m_1 & m_2 \end{bmatrix} = \begin{bmatrix} a_1 m_1 & a_1 m_2 \\ a_2 m_1 & a_2 m_2 \end{bmatrix}.$$

This is not very nice geometrically, but it can be thought of as projecting onto the direction $\mathbf{m} = (m_1, m_2)$, dilating by a factor of $|\mathbf{a}| |\mathbf{m}|$, then rotating the direction \mathbf{m} to the direction \mathbf{a} .

3. The relation $\operatorname{Rot}_{\alpha+\beta} = \operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}$, translates into the matrix equations:

$$\begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{bmatrix} = [\operatorname{Rot}_{\alpha+\beta}] = [\operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}] = [\operatorname{Rot}_{\alpha}] \cdot [\operatorname{Rot}_{\beta}]$$
$$= \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) & -\cos(\alpha)\sin(\beta) - \sin(\alpha)\cos(\beta) \\ \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) & -\sin(\alpha)\sin(\beta) + \cos(\alpha)\cos(\beta) \end{bmatrix}$$

Equating entries in the first and last matrices gives the Angle Addition Formulas.

4. Matrix multiplication seldom commutes, so $AB \neq BA$ for random 2×2 matrices A, B. An interesting geometric example is given by $A = \operatorname{Ref}_{(1,0)}$, reflection of the *x*-axis across the *y*-axis, and $B = \operatorname{Ref}_{(1,-1)}$, reflection of (1, -1) across the line y = x:

$$[A] = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad [B] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The product are the counterclockwise quarter-turn $AB = \operatorname{Rot}_{\pi/2}$, and the clockwise quarter-turn $BA = \operatorname{Rot}_{-\pi/2}$.