\qquad

Don't write just answers: show your work, and justify steps by quoting theorems we have covered.

1. (30pts) The picture shows the gradient vector field $\mathbf{F}(x, y)=\left(y-1, x-\frac{1}{2}\right)=\nabla f(x, y)$ for some function $f(x, y)$; and also the region R enclosed by \mathbf{c}, the circle $x^{2}+y^{2}=4$.

a. On the picture, sketch a contour map of $f(x, y)$, including level curves through critical points.
b. On the picture, mark the absolute max/min points of $f(x, y)$ over the region R : max \square, min \triangle.
c. Determine the circulation integral of \mathbf{F} around \mathbf{c}. Justify.

$$
\oint \mathbf{F}(\mathbf{c}) \cdot d \mathbf{c}=
$$

d. Determine the flux integral of \mathbf{F} across \mathbf{c}, out of region R. Justify.

$$
\oint \mathbf{F}(\mathbf{c}) \cdot d \mathbf{n}=
$$

e. Use the Gradient Theorem to find a formula for $f(x, y)$.
2. (20pts) For each statement below, if it is true, give a proof using theorems we have covered; if false, give a counterexample.
a. Claim: For any differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the curl of the gradient is zero: for all (x, y),

$$
\operatorname{curl}(\nabla f)(x, y)=0
$$

b. Claim: For any differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, divergence of the gradient is zero: for all (x, y),

$$
\operatorname{div}(\nabla f)(x, y)=0
$$

3. $(25 \mathrm{pts})$ Consider the parallelogram R with corners $(0,0),(1,0),(1,1),(2,1)$, enclosed by lines:

$$
y=0, \quad y=1, \quad y=x, \quad y=x-1
$$

a. Parametrize the region R by a linear function $L(u, v)=(x(u, v), y(u, v))$ for $(u, v) \in[0,1] \times[0,1]$.
b. For a general function $f(x, y)$, set up its integral over R using the substitution $(x, y)=L(u, v)$.

$$
\iint_{R} f(x, y) d x d y=
$$

c. For a general function $f(x, y)$, set up its integral over R in the form $\int_{x=a}^{b} \int_{y=c(x)}^{d(x)} f(x, y) d y d x$.

$$
\iint_{R} f(x, y) d y d x=
$$

4. (25pts) A cycloid curve is traced by a point on the edge of a unit circle rolling on top of the x-axis.
a. Parametrize a cycloid, $\mathbf{c}(t)=(x(t), y(t))$. Hint: Radian angle turned $=$ linear distance rolled.
b. Parametrize the region A under one arch of your cycloid: $G(t, s)=(x(t, s), y(t, s))$ for $(t, s) \in A^{*}$.
c. Determine the area under one arch of the cycloid:

Area $=\iint_{A} 1 d x d y=$

