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1 Vector Fields

Definition(s) 1.1.

toe field on. B
1. Let D be a set in R? (plane region). A \/ﬁf—’af e o\, (R is a function F that assigns to each

point (z,y) in D a two-dimensional vector

2. Let E be a set in R3. A VO_C*O" ‘('\n

Toup,

l& own [Q is a function F— that assigns to each point (x,y, 2)

—
in E a three-dimensional vector F Cxl% 2 ) .

—2

-

Let’s practice by sketching a vector field.

Example 1.2.

Sketch the vector field:

on the graph below.

F(z,y) = (-y,2)

E(o/o) =<-0,0>

" FU,0) =Ko 1>
F( ) =0, LY
F(2,3) =43 A7
FC—’;W = <'\,“‘>
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Today we are upgrading to a new level of function:
Let’s talk about dimensions really quick:
So far we have function that take:

Dimensions

Equation

Example

Picture

1 dimension

— 1 dimension

062 {' ()

X =%X(+)

g 3
- X-‘
\.’b

or

X&) = St-)

|~
S

2 dimensions

— 1 dimension

2= C(x,\p

=y

2,23 4
1.2 2.3 4
— - 2 ®.3 %4
VJ = {:(x;"&ﬂs ] - X\a '\'12, 5?25 N 1 ' 2?200
2 et
0" ,0.1 0
0 2.1 2
3 dimensions — 1 dimension 4.1 24
. N
c )=t ,\t’(-‘:)’ /

1 dimension

— 2 dimensions

P6) = ok k)

1 dimension

— 3 dimensions

RS
= (k) ,\&’Q )

@)

)
Lo N
("-?'s\x\,cos{'/
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to Dim.
and so you can see we are missing some pieces still! 11213
These missing pieces will be called vector fields and they are our friends for the g X|X[X
rest of the semester. =12 [X Q][¥)
2 23 (X0
Dimensions Equation Example Picture
- PE
—) F - < “ _ d/ 4
FO";‘@ = (XJ\a‘) X ‘3 T
\
P

2 dimension — 2 dimension <?(X)\§) IQ(X'\B)> T £

2 S—
Tl ® F O™ ) =
) A
QO\ L \ {- '\1 — .{. _
R D) QuyBy 7 ) & T
3 dimension — 2 dimension - \; >

A

-
Yoe P o) r “’f AERN V"V\\-A =l
S e R ALY
s ), R WEZIEN

=

2 dimension — 3 dimension

/7
’E(X,\Q 1) o 2 |
- T X2 T
=Py Qqp) Rocy?) Qe > N
Vi / /

3 dimension — 3 dimension / RNy

it
&
T~ad

N
V
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Here are some pretty pictures from the book.

—

=
=

—_—

around an airfoil in a wind tunnel.

Velocity vectors of a flow

Velocity vectors of a flow
around an airfoil in a wind tunnel.

Streamlines in a
contracting channel. The water speeds up
as the channel narrows and the velocity
vectors increase in length.

Vectors in a
gravitational field point toward
the center of mass that gives the
source of the field.

FIGURE 16.11 The radial field

/
/

T
N

A “spin” field o

Vector fields can represent many different things. The main applications we will focus on are:

1.

FO('C&,

2.\l oc,;‘\' oy

We have technically seen vector fields before even though we never used it’s full potential. Any guesses?

Cj = R |

Definition(s) 1.3.

1. A 05(‘0\& ‘\ff\‘k \’(_Q'["Qr ‘F' ﬁ\A is vector field found by taking the ,,era \'e.""l' of a function.

(8}
Ex: ‘?(X_p@: )z-}\g' - V‘? = <'JX, &}5
2. A vector field F is called a Q.“su\w&:\% \ltb-l-'f ‘P‘-C[ C\ __1£ it is the %ﬂA‘\e"\{- of some

scalar function, that is, if there exists a function f such that VF = F
f

\ .
?01'{/{'\3\*\] ‘Fuhc‘l’\m for F.

In this situation f is called a

o F = {EM> tonservative it ?a{‘e.\'\'\ax‘ ’F\\V\C‘k% ‘F’ %-’%



MTH234

Chapter 16 - Vector Calculus

Michigan State University

Example 1.4.

y
N NN
..... “ s tr 1277/
commre Wit/
RN B A A A
T vrr 277
e ~“-»-r////<+/+>
PP A rr sl
7‘3.'/ /_‘-I t_ll 0 lI ,12,/‘:3 X
/////4:_ ..... ~
YRR ...",,,<+,+>
VAV AVAR AN BN AN . . PR
/////1_42—\-\’,.,
/////11 [N U
VA A A IR

Figure may be scaled down

Example 1.5.

Which of the vector field describes the plot to the left?

at (1,1)

at (2,-1)

Bl {00

Find the gradient vector field of f(z,y) = 22y + 3z — e~ *Y

= (ay+3-E V() W0~ (%)

L2,
<‘l/\>

= < Tlua+'5+\a,€:w) A -|-><e_->w}
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Group Work

1. For each of the following functions, draw level curves f(x,y) = k for the indicated values of k. Then compute the

gradient vector field, and sketch it at one or two points on each level curve.

. Vi-<%E, %)
) -

1

Vi) = <10S

v E(6)3) = <o, %
Vi(-58,0) = {-&",0S
VE(o,-IR) = <o, LAY
Vi, @) =<, 5950

|}

N2, @) =<1 28Y
(b) f(xay):xiy,£7£—y;k:l/273/4,2 —“Z

. 4:.y. m 4

Ra Tl l. 3/4 /I _q,= x% = Yy

9,9
V-F(\’B)=<;\3?; \‘c ST
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2 Line Integrals

Remark 2.1 (Things to remember from past sections).
1. A vector representation of a line segment that starts at ro and ends at r; is given by

r(t)=(1—trg+tr;, 0<t<1

. t[ran\? | (day\? ~— f‘w—(ﬁ“"b‘f
2. Arc length function s(t) :/ T + Tu du

3. Taking the derivative with respect to t we get
ds _ [(dx\* | (dy\®
dt dt dt
dx 2 dy 2
e can express this as ds \/(dt) + (dt)

Theorem 2.2.

The arc length of a curve C' parametrized by r(t) is given by:

gcl}\s

This is a natural ideal because now all our measure of “volume” can be written as integrals of 1

1. Volume of E = gSSE ‘ A\{
2. Area of R = E(]\ I &A

3. Length of C' = S | as
(&

And just as in CH15 we integrated other functions in our double in triple integrals we also would like to integrate other
functions here in our line integrals.

Definition(s) 2.3.

If f is defined on a smooth curve C, then the \\M .\"\'l'e ara \ of f along C is given by:
0

JREUEE f: Fon, ) J (“ﬁy(é&g AL

Note: smooth curves are defined in 13.3 as continuous and having a parametrization r(t) such that r’(t) # 0
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Although we are defining these as planar curves we can easily upgrade to space curves by “sprinkling in zs”

Definition(s) 2.4.

|t as= | bf(w(t%y(t)w(t))\/ (fl—f) " (%) i (%) "

Notice in both of these cases
/ fds= / f(r ()] dt

‘g

Example 2.5.

Suppose you are a whale who is eating plankton as he/she swims through the ocean. The plankton are spread all throughout
the ocean with a function p(z,y,z) = —2(10 4+ z 4+ x). You (the whale) are chilling out at (1,0, —12) are about to swim
around in a circular curve; C' : 2?2 +y?2 =1, z = —12 _—

How many plankton do you eat?
§ PMyR) ds
c

@)= < C,oSJC/ s'm-l:/ -\2> ; te [o)’mj
(P B)| = [{-sik, cost 0PI
\{ smtrcodtr0 = 1

§ PO s = o "J—UO— VL cns{) 1 dt
S\vrk{

: T—‘J /%\*“ﬁ[’“ﬁ“
= ’—1-'f —’L(’mﬂ
=14

Now let’s learn two other cool things line integrals are good for.
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How many bricks it takes to build the Great wall of China - Or area under space curves

So the book has a beautiful picture of this:
z Example 2.6.

A portion of the great wall of china can be parametrized by

r(t) = (2sin¢,2cost) ¢ € [0,m] where the height is given by
H(z,y) = xy? meters. FEach brick has a cross-sectional area of
100 ¢m?. How many bricks are needed to build this portion of the
great wall of china?

mt H ds
FIGURE 16.5 The line integral f(.fds r (—k\ - <1 SS '\{} 1Co§{> —tf Col K‘_\l

giyes th.e area of the pfrtion:l,of the
zYEn}i(r;c,e;l)sszfe or “wall” beneath | (' (+) l: I < Q(bst N ls ;\4 ‘t> \
N
SCH&S =go(9‘smﬂ("\c0sl+)\1 &*} _ ' L{'u{&" L{Sin1+ - a

- 16 g: sift codtt &t

- -Jg,_[ wé-ﬂ”

T9Qses brck i
lo . 32 o - 100 bne 31—;’_0 =106 brdes

h?ightf(x, y)

6
23T N

How heavy stuff is (given a density function)

Example 2.7.

Suppose I have a nice spring that seems to follow the curve r(t) = (3sint, 3 cost, 4t) with ¢ € [0, 87] which happens to have a
density function of §(z,y,2) = 10 — z — y g/cm. How heavy is the sprimgz——

orQ -

‘;}g,_r % )s = (|o Ysit-Yast) m at

5| *"(10-3sint ~3cost) &k

—_—

= Si\O{li“ = 400 Gronns
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Now let’s consider a special case where f(r(t)) = F(r(t)) -

. This gives us a way to do line integrals over vector fields!

Definition(s) 2.8.
Let F be a continuous vector field defined on a smooth curve C given by the vector function r(t), a <t¢ < b. Then the
line integral of F along C' is e

/ b P o] ol e CT; T ds

b 2 o Lt \,Jor\L\
Sq F—Erﬂ’)) @At — &_3‘3
0 F- &7

IEF(z,y) = (P(2,y),Q(x,y)) and r(t) = ((¢),y(t)) then

_ SLPAx—r QOLN

If F(x,y,2) = (P(z,y, 2),Q(z,y, 2), R(x,y, 2)) and r(t) = (x(t), y(t), 2(t)) then

_ gc?o\x"rad'a’fmi

So besides a great way to torture math students what is this used for? oy

Theorem 2.9.
Take F to be a force field then the work done by the field over the curve C' is given by

—z—-

W = FT”\S
(d

Idea of proof:

Recall
W = F D (where D is displacement vector)
. . o . X <0 =D+
So if we consider the work that the force field is doing at each point on the curve we have:
Z _5>103 —
— (
Wat a point = F . T = \F\\T‘ cos@ (see picture for idea)
- =

Summing these all up over the curve we get

= 5
Wover the curve = F ° —r d‘é

Cc
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Example 2.10.

A picture of the force field F(x,y) is given below. Determine if the work in moving a particle along the quarter circle

|

22 +y? =1 from (0, 1) to (1,0) is positive or negative using the picture.

\
-

Example 2.10 (again). -_— 3>903 —

Find the work done by the force field F(z,y) = (z2, —xy) in moving a particle along the quarter circle 22 + y? = 1 from (0, 1)
S
to (1,0).

ek = § FTas= (7 Few) cod

c)= <c_osl(}S;n‘t> { < {‘%’01
r'(ﬂ - <_S;AJ(/COS ‘t>
= g:;—,_<¢0;-l: - cost $‘m+> '<‘ s‘l‘")(, (°s{> ‘k’k
- Q" (~sint wS - codtt s’\nO &
Th
Y & St st M
“

- 2(es]y, = T[1-0] =&

5
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Group Work

1. Evaluate [y dz+ z dy+ x dz where C' consists of the line segment C; from (2,0,0) to (3,4,5), followed by the line
segment Cs from (3,4,5) to (3,4,0).

C.ooq@) = QA+, 4,54)  tefo, 7] = dr =1 4 58S

Cot qf)=<5,,556) | telo) = 4-{0,0.

gc\g Ax-r%%-l—%o\-‘t = Sc \2&::-)—2%1-)&0\-1 + \\ \3&4-2%1-)&&-‘&
= S'o[(w N+ (SE(H)+ (art) (s)] at
+ &‘o(‘(q\l:ﬂ +(s -s+)(o\+(3) (-53-\ ot

= g:[‘khlo{ +10+5% - ISIA{

=), (esqu - [Re],

= 1%‘5 = 5

2. What is the calculation in 1. telling you (in terms of Work)?

The vedtor feld s telpina i the

:Pc\t'\’(glc_ woVe O Mross ‘ﬂ»z_ Curve_
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3 The Fundamental Theorem for Line Integrals

Warm up:
Calculate the line integrals [, F - dr from (0,0) to (1,1) in the vector field F = (2z, 2y).
(1,1)
1. Where C is parametrized by (t,t) ¢ € [0,1]
2. Where C is parametrized by (t,t2) t € [0,1]

3. Where C is parametrized by (sin (%) ,t?) t€[0,1]

4. Where C' is parametrized by the picture: (0,0)

@ [, Feerces cay=<iy
§i<at,;t>-<n,.>o\+-.§'°% ol’c=[21l]:= B

®__,_/-

\ 2 F/(‘k)= cos (“—i:_— % ’a..l:
©, 80“5‘"@’;‘0@‘*[%)uiou V), 35

( | rsia(%) w‘i(%) FU¥ At

0

fs{n"(%>+-tq]:) = l+|~0-0O=1
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After doing 1,2,3 hopefully we would all conjecture the answer to 4.

So what is so special about the vector field F = (2x,2y)? It seems like no matter the path we choose we always get the same

answer! (How nice). This has a nice name:

Definition(s) 3.1.
Let F be a vector field defined on an open region D in space, and suppose that for any two points A and B in D

the line integral: fc F - dr along a path C from A to B in D is the same over all curves. Then the integral is called

Dath \h&?h&%% in .
]

And so we need to develop some mathematics to help us know when a field is going to be path independent or not. It turns

out that "DO\_\’II\ ‘\ m&%nh&m:\'_ fields are _ (.00 S4 Vﬂ‘l"\\fe-

Theorem 3.2.

Suppose F is a vector field that is continuous on an open connected region D. If / F - dr is independent of path in D,
c —

then F is a conservative vector field on D; that is, there exists a function{ such that $7 = F .

Definition(s) 3.3.

1. A region D is open if for every point P in D there is a disk with center P that lies entirely in D. (So D doesn’t
—_—

contain any of its boundary points.)
x

2. A region D is connected if any two points in D can be joined by a path that lies in D.
3. A curve is called closed if its terminal point is the same as its initial point.

4. A simple curve is a curve that doesn’t intersect itself anywhere between its endpoints.

\, o %nw‘ks !

5. A simply-connected region in a plane is a connected region D such that every simple closed curve in D encloses

R —
~—

only points that are in D.

Open Nt comedah ()l ) et

- [a—

R I\ O

A .
“° 1\ QX S

: Y\b)( S\‘w\?lf- (e
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1 A
Looking at F = (2x, 2y) again. Can you find any functions f(z,y) who have gradient (2z,2y)? —g\_.: X +\'X

"

1L ~A
Moreover please notice that -F( , , lw - _E: (0) a’w = \ _\,\ - 0~-0 = l
Thats to say that in our case

| F-ac = F®)- feny
gimf Ae = $B)-F(R)

Theorem 3.4 (Fundamental Theorem of Line Integrals).

Let C be a smooth curve joining the point A to the point B in the plane or space and parametrized by r(t). Let f be a

differentiable function with a continuous gradient vector F = V f on the domain D containing C. Then:

LF A= f@)-fa)
If 47 - @\ﬂg

Theorem 3.5.

/ F - dr is independent of path in D if and only if / F-dr :Q for every closed path C' in D.
C C

So here is where we sit:
1. We like conservative vector fields because they are path independent.

2. We like them even more because if we can find their potential function then line integrals are extremely easy to

calculate.

Here are the natural questions we need to ask:

1. Given a vector field is there a way to tell if it is Lb‘ﬂs'e(\fc\'\i\vt_z

2. Okay we know we have a conservative vector field... How can we find the 'D@‘\Tfy\*\. Q\ -(:U\V\C’{— O
|
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and very importantly we have:

Theorem 3.6 (Component Test).
Let F = P(z,y)i+Q(z,y)j be a vector field on an open simply-connected region D. Suppose that P and @ have continuous
—— ~

S

first-order derivatives and

Then F is ConServert W&

Finally! it’s example time!!!!

Example 3.7. v.g = < “:K *r} >
h 7 !

Consider the vector field F = (e% cosy + y, 7 — % siny + ?:}ZD-\

1. Show that F is conservative over its natural domain

2. Find a potential function for F. A, (b' 03 B = (I) sya ( )\)

.
3. Evaluate [, F -dr where C is the curve parametrized by r(t) = (t,sint) and ¢ € [0, 1]

Y — L
@ R mesiyrl Qs i-dising

O o o o

\@‘N\“‘“@ X\‘&iﬁ

S=3 ®  ¢-d= fo -5
CL\I}f): 1\%* \( = C'c.as(s\mm\-\- S.\’\(\)'I'.S.S\\n(\)
Fofcomomgrzgr k| TR KL
¢ % ecas(smO)) US|
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Remark 3.8 (Technique for finding potentlal function).

1. Integrate ; ? &X to get S& 3

2. Try to solve for C_)\((i )
(a) Differentiate &*‘ %’:‘Ek ' with respect to % and set it equal to Q.

(b) Solve for q/ (4 ) -
(¢) Integrate %’ (}é ’ with respect to Ekto get g(y).

Example 3.9.

1. Show that for F = <:1:_— v

—) Q,- LoD X . f'-x

2. Show that [, F -dr = 27 where C is a loop parametrized by 7(t) = (cost,sint), t € [0,2x]

Solution.

2 _
/ F-dr :/ <7y2, %) - (—sint, cost) dt
c 0

2?24y 2?4y

2m :
—sint t
:/ ( i ,g> - (—sint, cost) dt
0

1 1

27
:/ 1 dt =[27]
0

3. Does this contradict Theorem 3.57

ESS

’\)\'S‘N’\S&g\.

o
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Group Work % CB\)\ - -(:G\)

1. The figure shows a curve C' and a contour map of a function f whose gradient is continuous. Find |, o Vf-dr.

¥ “

AN
§ \\\\

2. Consider the vector field F = (3 + 2zy)i + (22 — 3y2)j

SCVQ-F—ﬂt(BB—{:(P\\: 50 - 10 =40

(a) Determine that F is conservative using the component test.

’R&: Ax Qx = Ax Y—c.s E 'S ConServelive
S-\-’\QCL ’P\A: QK

(b) Find a function f such that F =V f
‘$=&3+1"\} dx = ¥x+ x1\?j+ %(\9
g = X+%(\'Q: X—’S\a
= ) =-dy 0 .

Rl = g+ K = Sx1X gy

(c) Evaluate the integral [, F - dr, where C' is the curve given by r(t) = (e*sint, e’ cost), 0<t<m.

A= (O)IB — B= (OJ—Q'-W>
SE.;\?C Q(o)-e“\)~‘§(°,‘> = —(“Q‘)_‘-(I) P_ + |

[
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Note: We currently do not have the correct theory in place to show that a vector field of 3 variables is conservative. However
if we assume it is conservative then we can find potential functions. Here is an example from the book (on page 1104) of how

to do this for 3 variables. Please read this through if you have trouble with your WeBWorK homework assignment.

u BT 1fF(x, v, 2) = ¥2i + (2xy + €¥)j + 3ve ™k, find a function f such
that Vi = F.

SOLUTION Tf there is such a function f, then
[1] flx,y.2) = y°
@ filx, ¥, 2) = 2xy + ¥
LE] flx,y.z) = 3ye™
Integrating [11] with respect to x, we get
flx, v, 2) = xy* + g(y, 2)

where g(v, z) is a constant with respect to x. Then differentiating with respect o vy,
we have

Slx, v, 2) = 2xy + g,(y, 2)
and comparison with gives
guly, z) = e*
Thus g(y, ) = ve* + h(z) and we rewrite [14] as
flx,y, z) = \-\' + :e_" + h(z)

Finally, differentiating with respect to z and comparing with [13], we obtain 1'(z) = 0 and
therefore hiz) = K, a constant, The desired function is

fry ) =xy’ +ye" + K

It is easily verified that Vf = F. =




MTH234 Chapter 16 - Vector Calculus Michigan State University
\6™

\(L
4 Green’s Theorem oM

Green’s Theorem gives a relationship between double integrals and line integrals around simple closed curves. (Start and end

at the same point. Are not self-intersecting except at endpoints.)

=5 Oy

Definition(s) 4.1.

1. A simple closed curve C has /\D DS‘\’\\’{‘ Of G\_l— YOV if its parametrization traverses the curve exactly

_‘: \ .
once in a _ G own &’C.]DC\'LW\%L’ direction.

2. A simple closed curve C' has f\{garl’\v& o‘-\.ay{\'d\ VSWAL  if its parametrization traverses the curve

exactly once in a Cl (o] L\LW VSe_ direction.

Theorem 4.2. C; I"Q-QN\/S —(—)\gope/\pf\-

Let C' be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C.

If F = (P, Q) have continuous partial derivatives on an open region that contains D then,

: Py Q%z (%i‘.__?% JA
. 5 S

or equivalently

SCPTAS = “D(QX-PQO\A

The idea of the proof is important because it will come up again in

Stokes’ Theorem. The idea is “circulation”. Because we have a closed

simple curve the integral / F - T ds counts how the particles on the
a*
curve are circulating. Green’s Theorem says that instead of counting how ~

the particles are circulating on the curve we can count how the particles

are circulating inside the curve.
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That is

Z(Circulation of points on curve) = Z(Circulation of points inside curve)

Idea of Proof

¥

T \

So now we need to determine circulation at a point.

First lets

consider circulation around small rectangles.

Along the 4 boundaries of the rectangle we get:

S . . Top: Flx,y+ Ay) - (-i))Ax = —P(x,y+ Ay)Azx
\ | \\\ . \\\ <?l&> .<ll°>
(z,y + Ayl\) \ F &TI) AN (z + Az, y + Ay) BOttOm: F(.T/', y) . (i)Am = P(J’,‘, y)AJ}'
! \ — —_—
= AN o ’
— RN Right: Fz+ Az,y)-jAy = Qz+ Ax,y)ly
= N
(2. v) F. (i) (= + Bw, ) Left: F(z,y)  (=j)Ay = —Q(z,y)Ay

T
SF-‘MS

Grouping favorably we get:

Circulation of O

Top + Bottom + Right + Left

Circulation of (I

(=P(z,y + Ay) + P(x,y))

Circulation of O

AyAzx +

—P(z,y + Ay)Az + Pz, y) Az + Q(z + A,

Q(LU -+ A;v,y) — Q(x,y)

y) Ay + —Q(z,y) Ay

Ay

Circulation of O =~

(=P, + Q) Dy
Now we need to scale from circulation on a rectangle to circulation at a point

Circulation of O
Area of O

Circulation at e

(=Py + Q) AyAx
AyAx N

Circulation at e

Q

And so now we are ready to see why we love Green’s Theorem

N AyAx
_9Q _or
 Ox Oy
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TC
Example 4.3.
. . Re
Find the work done by F = (4 — 2y,2x — 4y) once counterclockwise 7,
_ . AR
around the curve given by the picture: / 1 7 3
: LL RL
Solution. Let’s pretend we forgot Green’s Theorem on the exam.
To parametrize this curve correctly I need to break it into 4 pieces
/F-Tds:/ F-Tds+/ F-Tds—|—/ F-Tds+/ F-Tds
c BC TC LL RL
Parametrizing the four pieces we see that (in a counterclockwise direction)
BC': r(t) = (cost,sint) t € [m,0] . r'(t) = (—sint, cost)
TC : r(t) = (3cost,3sint) t € [0,7] r'(t) = (=3sint,3cost)
LL: r(t) = (t,0) tel,3] r'(t) = (1,0)
RL: r(t) = (¢,0) te[-3,—1] r'(t) = (1,0)
Let’s calculate these individual integrals
/ F-Tds:/o(4m—2y,2mf4y>»r/(t) dt / F~Tds=/lﬂ(4w72y,2x74y>-r/(t) dat
JBC T TCc 0
= /0(4(cos t) — 2(sint), 2(cos t) — 4(sint)) - (—sint, cost) dt = /()”(4(3 cost) — 2(3sint), 2(3cost) — 4(3sint)) - (—3sint,3cost) dt
— /0 —4sintcost+ 2sint + 2cos? t — 4sintcost dt = /07r —36sintcost + 18sin? ¢ + 18 cos? t — 36 sin t cos ¢ dt
:/O—gsintcost+2dt =/O7r772sintcost+18 dt
=2(0—7) = -2~ = 18(m — 0) = 187«
/LL F-Tds= /.:31<4x -2y, 22 — 4y) - /(1) dt ./RL F.T ds = /13<4z — 2y, 22 — 4y) v/ () dt
= /71<4(t) — 2(0), 2(t) — 4(0)) - (1,0) dt = /3(4(t) — 2(0), 2(t) — 4(0)) - (1,0) dt
3 A
='/:31 4t dt :/1341: dt
= [2t2]:;=2(179)=—16 = [212]?:2(9*1):16

Giving us our final answer of

/F-Tds:—27r+187r—16+16:
C

Now let’s imagine you remember Green’s Theorem.
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Example 4.3. C
Find the work done by F = (4 — 2y,2x — 4y) once counterclockwise v :

| | M),
around the curve given by the picture: 7 17 3

\[\]ar\(: F TAS -

@
g+a i

= ({4 an
2

- Yededd

o

~ {ar"f\ E ‘ITD%_'D:I

|Cqx

Notation 4.4.

1. The notation

PAx-chLNG

Is sometimes used to indicate that the line integral is calculated using the positive orientation of the closed curve C.

2. Another notation for the positively oriented boundary curve of a region D is ’aD .

Fun Reads

There is additional material in 16.4 that is covered in the book that MSU will not currently be testing on. Those wishing to
gain a greater understanding of the power of Green’s Theorem may wish to read the section on finding area using line

integrals (top of page 1111) and the section on Extended Versions of Green’s Theorem (starting on page 1111).
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‘(\gﬁx"?\k A
Group Work
1. (WW##3) Use Green’s Theorem to evaluate the line integral ?{c 4cos(—y) dx + 4% sin(—y) dy. Where C is the
rectangle with vertices (0,0), (2,0), (0,4), and (2,4). P Q
»
< Bx sy ~Ysin (o) dA
+ c
L 1 (U4
~—— Nt 7 = - .
7 (%X L[)S\V']("‘a) A'\a A\X,
0 Jo
= - h Y
Y (-lx —Ll X’_& { COS(—%B—X
o o
8 Cos (— ‘-\) - |] Yy
s P
2. Calculate ]{ (x* +2y)dx + (5z +siny)dy where C is the boundary of region | L
c x
shown to the right: ' v
(
) L0Y-1L

S-244 = 3§ W= 3(2)= 6
D D

———————e
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5 Curl and Divergence

Before we get to Curl and Divergence we need a new operator.

Definition(s) 5.1.

The vector differential operator V (pronounced “ Af-’l ") is defined as:

Definition(s) 5.2.
The C-U\.V\ of F is the vector field on ]RL?’ defined by:

curl F = vx;
\ 3 N
_ Yo B/b% Cln
P oaQ R
= (R Qv - (=P + (8, -R)K

<’))“3'Q% J’P; "‘Rx, Q,\*P\!>

Note: Does third component look familiar? It 2 dimensional “ dr-c,\,\lq ‘HU"\ q-l— q po‘,.—\‘\' 7 that we
j
Y
integrated in (oreems Theorenn CAlsoit Q-Pu=0 = Y, =P, which
0 O

is the major condition in the C,OY"l‘DD’\ZM_‘: %-QS'%
1

Theorem 5.3.

If F is a vector field defined on all of R® whose component functions have continuous partial derivatives and

q
cocl F= O , then F is Cmézvvvd'\&
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Example 5.4. ‘;x 'S"vk 'P%
" “ ()
Consider the vector field F(z,vy, 2) = y22%i + 22y23j + 32y°2°k.

(a) Show that F is a conservative vector field.

(b) Find a function f such that F =V f.
R

. ) 1§
J
ol F= | % %y %2

3

= (6xqT —bxy T )i -(3¢F — 3T ) )+ (W& -yE Dk

= £0,0 0>
2

2 _ 3
= B (r) =gt
D) = @)
caoa,e) = C&(-'k)
&’ 3xu€f' s og(:a 7%{
&= O
=)= K

Fexg K
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Definition(s) 5.5.

The A\\\r&.f‘ qor~C L of F is scalar function defined by:
\

—_
div F =

Y - F
B <%§ /8/6\61%%> ‘ <P"Q 'R>
- ?x"‘Qy\'Ra

Example 5.6.

If F = (22, 2yz, —y?) find div F.

&'\JFs %'l'xl'\‘o

Great but why is this useful?

Theorem 5.7.

IfF=(P,Q,R) and P, @, and R have continuous second-order partial derivatives, then
}\\1 (C\MI F) =0

Note: Proof of this is in the book on page 1119. It is very boring and not at all enlightening. It works because of

Clairaut’s Theorem.

Example 5.8.

Your friend Eugene comes up to you and is like “Whoa you have to check out my awesome vector field F. You know what? I
bet you can’t even figure out what it is. The only thing 'l tell you is that curl F = (xz, xyz, —y*).” Shut Eugene up by

!
finding his vector field if it exists or prove that Eugene is a liar. ‘?\.} -Q‘h \\ \\Q P
%
Pi"l{‘i

dus(owl F) = div 2 X9z, -vg >)

= 2R FO \
S \;"‘c'
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Definition(s) 5.9.

f

1. Curl helps to measure rotations about a point. Because of this if curl F= 0 at a point P then the fluid is ree from

rotations at P and F is called \\‘ro‘kq*\' }D’\Ql at P.

2. Div (Divergence) represents the net rate of change (with respect to time) of a mass of fluid (or gas) flowing from

the point (x,y, z). If div F= 0 then there is no net change and F is said to be '\Y\CUVV'\V"'\T)"Q..SS \}0 ).2,
1

vk .
- ( o 3l
A = 3/‘0 ;/5)2 a/a
Alternate Forms of Green’s Theorem Cw | (<vb) J O» ) X o | -o b))
R i )K
-"L>

Two ideas here that will be used later. Both have to do with downgrading curl and divergence to 2 dimensions for a Inln,),lk<
That is take F = (P, @, 0)

Theorem 5.10 (Green’s Thoerem).

Bunch of conditions up here. <,¢ , =" Q/("?\.A> <6 , D} \ >
e (525 o

:gf Cu\(] E ﬁ A\A
D

And while this may be annoying to write right now, it is the first good step in expanding Green’s Theorem to 3 dimensions

and discovering Stokes’ Theorem (16.8).

F-n ds wherenis a
—_—

The second idea is instead of choosing to do the line integrals é F - T ds instead evaluating

Q\e\

ou\*»\mr}\ ?ORw‘\'iv\a W» \)( no(ml\let:{fo( vector to C.

Theorem 5.11.

An outward pointing unit normal vector to a curve C parametrized counterclockwise by r(t) = (x(t), y(t)) is given by:

Al = ,(ﬂ'{v}&) -x' @)Y
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Theorem 5.12 (Green’s Thoerem Alternate).

Bunch of conditions up here.

%F nds—// <%+@) dA

= [SD dv F AA

A proof of this can be found on page 1120. This will help us expand into 3 dimensions for Divergence Theorem (16.9).

Example 5.13.

Let F=—2zi — 3yj + 5zk. Is F irrotational/ incompressibleggboth Elneither?
dw F= -1L-2+G=0

- E eSS b

_\%;QS‘, om 10|€_
\ ') K
3/3\ %"b 3/31
-1x -’S\h Sa

"(O »W-CO Y,¢ O )k

= {0,0,0>
\BQ“S)’ \“’rb’h\‘hm\

C\M‘(F:
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Group Work

1. Consider the vector field F(z,y) = (2 cosz, sin(zy)) shown below.

y
L R i el o 2 BRI g
e R R R R . mearal A 2 B RN
e LN NN T A A N ‘\\\\R\
C A IR IRt & el i B AN
PR P B L ENN a—
PR > 277 1 VAN -—
PEEEERRE B BN
LA N~ PP EEES SN
P A - NN w
—— s s~ . _
1 - S e X 2 X
LN - ~SN Vi S
L R R e e e R R d
NN I g 2 ~NN VIS -
ARVt 2 A eaN NNV S -
EN N e o o A Ay AV g —
AN P AN L U
R T B A A e N N A
PN EE A A I e SO NS T U SRR
e sVt P PAA NN N L e =
Scaled Unscaled

(a) Find formulas for divergence and curl of F.

&\\l E s =2s\+ Cos (x\&) (x)

Cp\rl F = < DJ O/ \%Qos(x\-é\>

(b) Show that the divergence is 0 everywhere along the y—axis. How is this apparent in the graph?
X=0 = _2s\or Cos(0)(0) = ¢
"‘Hft \I‘QC\OfS Q,VdQ.(\l \M{'D ARQ \g“O\X\‘S
Nave appro x'-w&el\a H. Same W\o%f\{’\&\d.b AS
vecXors \&c&\}\'«oé, e %"O\X\'S.

(¢) Find the curl at (g, 1) and <2§, 1>. Relate the sign difference in your answer to the direction of the curl.
Y ) ~ |
<0J O/ cos(3 7 -<OJD/ /,L>
0y ) ~ =
<0J O/ CQ5(2.3 7 ~<OJD/ /‘L>
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I w\q)k'\c.‘\t F(X,\h ,qﬂv =c
6 Surface Area 2 XHy e =

Just as arc length is an application of a single integral, surface area is an application of double integrals.

e In 15.6 we compute surface area for explicit surfaces 2= —F(X J\A3 . In chapter 16 we compute surface area of

parametrized surfaces.

L
Are lenal s LE)- (}ﬂ@m

Theorem 6.1.

The area of the surface with equation z = f(x,y) with (z,y) € D, where f, and f, are continuous, is:

AS) = ggbl Y (£ 1 dN

Example 6.2.

Find the surface area of the part of the surface z = 22 4 2y that lies above the triangular region T in the zy- plane with

vertices (0,0), (1,0), and (1,1). {-&;"@: >Z--lf:)\\.»Zs _(:X::Q\X ) 'Fv?f:l
A(s) - (\| I+ Y v AA
»
l‘()ﬁ
= | [J4xas dudx
6 0 OL‘(S

\ 3/1. !
7( x J4x+S ke =T L (4w ) l°

]

Example 6.3. _ % ED\_I ~ g’}/\.]

Find the area of the part of the paraboloid z = 2 + y? that lies under the plane z = 9.

-FCX) 33 >—(L+\‘&- gxsax

, 2y

) X1 Ae)- [( [H vug+1 A
D

S T eade

o cr— =
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6 Parametric Surfaces and Their Areas

)
Take time to read this and watch the videos before coming to class.

Recall that curves in space are 1 dimensional so we need 1 dimensional = 3 dimensional so they look like

r(t) = <1‘(t), y(t)v Z(t)>

Recall that surfaces in space are 2 dimensional so we need 2 dimensional = 3 dimensional so they look like
r(s, t) = (z(s,1),y(s, 1), 2(s, 1))

In the book they have a habit of instead writing:

r(u,v) = (f(u,v), g(u,v), h(u,v)) = f(u,v)i+ g(u,v)j + h(u,v)k

To get a better idea of the visualization and mathematics behind surface parametrization please take advantage of the
following videos (they are hyper links so just click on them on your computer). The videos take about 35min to go through
but you will have a much better understanding of this subject. I highly recommend it.

Video 1:

https://www.khanacademy.org/math/calculus/multivariable-calculus/surface_parametrization/v/introduction-to-parametrizing-a-surface-with-two-parameters

Video 2:

https://www.khanacademy.org/math/calculus/multivariable-calculus/surface_parametrization/v/determining-a-position-vector-valued-function-for-a-parametrization-of-two-parameters

Example 6.1.

Give a parametrization r(s,t) of the plane x + y + z = 2 over the

square z € [—1,1] and y € [-1,1]. (Picture to right)
r+y+z=2

=S
t

= A-s-1

(l

X
K
T

(—1,1,0)

V(S,Jc): <S)+/ a"g“—t>
sel T ad eV 0]

(1,1,0)
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Example 6.2. 2:=%

Find a parametrization r(s,t) = (x(s,t),y(s,t), z(s,t)) of the following: z = 3y/22 +y2> 2z € [0,3]
——

3
X = rcos8
X = SQﬂS-t

Lg: s sint
2 = R [Seost+stsiat
-3
c(sx)=<s cost, ssint 3s >

se(o,1] «d te(o x|

Example 6.3.

Find a parametrization r(s,t) = (x(s,t),y(s,t), z(s,t)) of the following: 22 + y? + 22 =9

X= e cos® s~
X= cwsB s'mq)
xX= cost si~aS
\g-.— 35]/\’tsif\5
2= Xdcos S
(s ;Q = (?.wgl—_s'nsl Asiatsms )3 cos §>

SE \'_o/w | and 1elo /1{3

Remark 6.4.

If you are doing things right then often Uxb'u-" [\"‘"— | -\_S for your independent variables s, ¢ (or u,v) should not depend

on one another.
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Example 6.5.
Parametrize the portion of the tilted plane  — y + 3z = 5 that lies inside of the cylinder 22 + 3% = 4.
_
/
X = S co5s t
\a: S S ‘E

2 = 6*’);4’\_-25

- 5- Scost+ssiak
3

L — scoghyssiak
r(sJ{) = <S QQS'E,35‘V\{/ 3 >

SQEO ;’—3 and € e (o }3‘“1

Remark 6.6.

Compare this problem to 6.1. These two problems together should teach us that it isn’t just about the surface, it’s also the

area we the surface is over.

Definition(s) 6.7.

A parametrized surface r(s,t) = x(s,t)i + y(s, t)j + (s, t)k is S""°°+L\ if g andh L  are continuous and

Tsx T t is never zero on the interior of the parameter domain.

e — —

Note: our parametrization of the cone 1 $  smooth.

Now our goal is to find and area equation for smooth parametrized surfaces. The idea is as follows



MTH234 Chapter 16 - Vector Calculus Michigan State University

If we chop our surface into lots of small rectangles

that have side lengths AS  and A'l: (where

s,t parametrize the surface) then the area of

the small surface piece is about the area of the

parallelogram made by the vectors AS (¢

and Ak T,

Then we can sum all these areas together to get
the summation:

B E Areo, o‘( //— O‘K—“f\
n
= Z ‘AS\"SX at ftl
n
= 2 [rsx0. | As At
Since |rs X r¢| is continuous we know that n

n

Surface Area = Z [rs X 1] At As = g( ( ‘-sxr-l:.l }S Mf
p]

Theorem 6.8.
The area of a smooth surface r(s,t) = (x(s,t),y(s,t),z(s,t)) with s € [a,b] and ¢ € [c,d] is:
— — -_
\
drl
¢cJ)A

Area = gg |rsxry| ds dt

Or the book writes:

Theorem 6.9.

The area of a smooth surface r(u,v) = f(u,v)i+ g(u,v)j + h(u,v)k with a <u <band ¢ <wv < d is:

_
d b

Area :/ / |ty X 1| du dv
c a

—_—
Remark 6.10. Note we can use this theorem along with the parametrization r(z,y) = (z,y, f(x,y)) to prove the 15.6
-

formula for surface area.
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There is still much to cover so lets talk about the following worked out example:
Example 6.11.

Find the area of the portion of the tilted plane  — y + 3z = 5 that lies inside of the cylinder 2% + y? = 4.

5+ ssint — scost

Solution. From Example 5.2 we have that the tilted plane is parametrized by r(s,t) = (scost, ssint, 3 )
where s € [0,2] and ¢ € [0, 27]
So we first need to calculate out:
. sint — cost
rs = (cost,sint, ———)
3
t int
ry = (—ssint,scost, w>
Now we can calculate |rg x r|
i j k
. sint — cost
vy x 1| = cost sint — 3
/ . scost + ssint
—ssint  scost f
t int int — t 5 T int int — cost
= (sintw — scostw)i — (costw + ssintw)j + (scos®t + ssin? t)k‘
ssincost + ssin’t  —ssintcost + scos?t . scos?t+ ssintcost  ssin®t — ssintcost .
S| - - )i~ ( : - : )i+ (s)k
A
.2 2 2 .2
ssin” t scos“t scos“t ssin”t
= + i— + i+ (s)k
= &=+ s k‘
5 gt

_ 52 s2 9s2 __ 1152_5
= \/?+§+T—\/T— g VIl

"\
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Integrating finally we get:

27 2
/ / SVIT ds dt
0 0 3

- ([ 3

- e

2m 2
/ / Irs x ri| ds dt
o Jo

4
= 271'6\/11

4
:?W\/ﬁ

Intuitively a slanted circle like this should have more area than a non-slanted circle in the cylinder so we could check:
9 4
w(27) = 4w < ?\/11

Since v/11 > 3. So our answer seems reasonable!
Remember: unless the problem specifies you can use 15.6 to help your evaluation.
Example 6.12.

5—x+y

Find the area of the portion of the tilted plane z = (Look familiar?...z —y + 3z = 5) that lies inside of the

cylinder 22 4+ y% = 4

Solution.

Area :// f24 f241dy dx
oV y \
Z_5—x—|—y 1 1
=3 = ([ \/:+:+1dyd
; J 5+

f(xy)=5_x7+y 11
’ 3 — il
folwy) = = _//R\/;dy :
(@Y =5 v
filew) =1 5 e
’ ViT o [amyid
= =Ty




MTH234 Chapter 16 - Vector Calculus Michigan State University

\ -
Group Work Nete: g 4w sm ‘(%>

o -

1. Find the area of the part of the cylinder y2 + 22 = 9 that lies above the rectangle with vertices (0,0), (4,0), (0,2), and
S fog - %=J‘1—ug
-1
( "
— T '?,ﬁO ,Q\f < ¢ (24)
" — Yra 'l.+(q__ 4.‘)
Anr ([ Foran = [ ] [0
k) L Ja -4y
ST N S Py ¢ ]
L{ i Jﬁ‘t\ "I[gS\f\ (3\6
l’l iSm ) ~ St (05&

= \’l Slln /5)

v* that lies above the disk 22 + y? < 4 in terms of a single integral. Do not

(4,2).

2. Express that area of the surface z = e~

evaluate. e X Xt
oo € Dot Laagt
Area g( \{,-u”\g)"'"l\ae_ \h)_‘_‘ AJ\
)
82 2 =Lrt * o
SRR =wg ST 4
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3. Give a parametrization r(s,t) of the surface z = xy? over the triangle with vertices (0,0), (1,0), and (1,1) in the

X=s, y-t 2=st

xy—plane.

csD=45%,s> s €lo, T, telo, s |

4. Use this parametrization to express the surface area as a double integral. Simplify as much as possible without
evaluating the integrals. = y -
g g n=LL,0t> = (o/[)ls-lz\>

L jl<

o £ | = (--l?/- st 1

o | st

\Ps xr_d: m
|

Aﬂﬂ: I“s"rt(u'aﬁ: m J(to\s
D 0

0

f‘sxf“t:




MTH234 Chapter 16 - Vector Calculus Michigan State University

7 Surface Integrals

Class Learning Goals
1. Calculate surface integrals of scalar functions

(a) Given an explicit surface, z = g(z,y).

(b) Given a parametric surface, r(s,t).

2. Gain an intuitive understanding of an oriented surface with orientation given by the unit normal vector and the
concept of positive orientation.

In 16.2 we upgraded from finding arc length, / 1 ds to finding line integrals of scalar functions / f(z,y, z)ds where that

c c
ﬁ\ & -~ ) — —_—
ds = & ¥ &l + . We will now upgrade from surface area to surface integrals.

Definition(s) 7.1. \

1. If a surface S is given explicitly as z = g(x,y) then define dS = J (%X) <+ CO\NB + ] o\\a_ J\X

\)
_ | rex ]| ds dt

2. If a surface S is given parametrically as r(s,t) then define d

Bonus Exercise: Show that explicit surfaces can be parametrized = s, y = ¢, and z = g(s,t). When done so then

B dg 2 g 2 — —_—
Irsxrtl—\/<am> +(8y) +1.

Remark 7.2.

With this definition surface area of a surface S can be expressed as KS [ & S
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Definition(s) 7.3.

The Sur'(:cx.u_ \A‘l'€9>\""°\.\ S of f over the surface S is given by
O —

gg . ‘F(x,\a ) dS

which can be expressed

1. Explicitly:

ng dS = ggD-FLX’\a’O&LNJ%Bm O‘ﬁa&x

D 2. Parametrically:

K-F as = KSD'F(:(Q{‘B\FSX%\ 1<dt

T =4y
’a{x_/‘{): "\ —Lx -Vk -
Consider the entire plane 2z + y + z = 4 which I have loaded with snakes according to the snake density function

snakes
N(z,y,z) = e v’ . How many snakes are on the plane?

7 m2

—

f NhyR)ds = g _*—‘i \I QT-/\-H draA)(,
s

\ = S &o =

" (e

= 10 [O +L] = SO sackes

Example 7.4 (FS14 Exam 4 Question).

r&r 45
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Example 7.5. Compute the surface integral / / 2% dS, where S is the unit sphere 22 + y2? + 22 = 1.
s

(a) by expressing the surface parametrically. __%

Se(o,n]
‘—(S;E\ = < cost sins , S'm'ES‘-nS, isj> Le (oﬂm}
A\J = éﬁ\‘lbtle&d) 0\‘9 (‘Ss < Cosk cos S , sintces SI—S'M SB
C&QMA}Q = gs'\{w&cbié 0= <-%wksias, cost s3-S } o>

r‘sx(‘t =< Cos‘ES'\'\lsJS"ﬂkS’i"\lSJ Cos S §'\.’\S>

. . . Y N
‘(‘S)«‘_L\ = Jc:asq"csmqs + Sln‘L“:Sr'\S +U=;$ S\:S

(!

s1ats + co's s\A S
=] sins(1) = Sins

s M

“—7‘: IS = Kcosls sias ds At

(V]

.
= an [ wds |

= V7-—\ 1L .1 —:l.-l_Ti
A R*J[Dl 3
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MTH234

(b) by carefully ripping the surface into two surfaces that can be expresses explicitly.
1 N 'k-'
g - X +\% ==\
2= [1-x-y
Tep R=al,y)= J 1= w
- 1A “Ax \
35, o o () o
S
- _ l-*-sk's*\ -ﬁ)\
/A 0 [
g [y A ’q AX

g (17 Ldo

UNEZ (l-t’“)”il '
= m&ﬂ -

Bt YD+ s AT

|
o,
i

Top
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We are moving into defining surface integrals of vector fields (just as in 16.2 after line integrals of scalar functions we moved

into line integrals of vector fields). To do this correctly we need a sense of orientation.

The book goes into a very formal definition for orientation. However non orientable surfaces are quite rare (extinct in this
_/—
class). We will just settle with an intuitive definition

Definition(s) 7.6 (ish).

1. A surface S is called an DV'\Q"{—A Swr (’CU’—IZ_ if it has two M

EX: rP (G\h 25, SP“‘-’-‘"-/ M\ %\maric SLQ"'C&,CLS
EX: Non oriented surfaces: ‘\/\0\,)\-\'\5 S*f\ e ) Kl.e :’\ BQ‘H‘IQ

2. An orientation is just a choosing of one of the two sides. Some common orientations include:

(a) O U\‘\—Na\rak (for closed surfaces [see below])

(b) QPWO\CA has a positive z-component.

3. In this class choosing an orientation comes down to selecting the correct &' "f-C:\' ‘o

One of our remain big theorems, the divergence theorem, will depend on closed surfaces so we will give it a few extra

definitions.

Definition(s) 7.7.

1. A surface is called closed if it is the lCJOV\YJ\&"\L of a Sc:l ‘\A PQ&\CN\.
_ \]

2. Outward orientation is also referred to as DOS \'sr\v& o \-?Jv\-b\“' \ o .
\

Insert Ryan rant about why orientation is necessary for the upcoming material.
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Group Work

1. Evaluate // y dS, where S is the surface z = x +y2, 2 €10,1], y€[0,2].
s

AS= [ (1F+ayY + 1 AA
RS KR

0’0
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2. Evaluate: // (2 +y* +2°%) dS
s

where is is the part of the cylinder 22 + y? = 4 between the planes z = 0 and z = 1, together with its top and bottom

J S=Tumvus,
L T o7
+°P Vtbom Sidas

disks.

On 1
gg (f+\§+ I)\l oro+l dA = g g (F+rdcdo
T o ©°
=an[ 52T = aw{y 3]
= 13«
On B

“g,(f*‘;* o) 8+t OA =1§: J: “rd 40

T
='.):K[—¢ o ~

C)(/\—S\ P(S,":)=<9~Los‘tj as{4£)5>
sefe,l telo,2x]
Pg" (olol |$
€z {-lsink, 2wnsk, 0
'\ 1 13
SxXfe=] o L \ \:(zw$¥J~lsiﬂ‘\:)o>
st ot 0

lrex |= Jdeorbrtstt+ 0t = A
1

N

Sxx‘»g»&“ 4s = gS‘ (4+sH(2:40)

S (e}
= @ (45 %)
- ) - o
ggsft»g*i AS = SST%@{ &T ~ ggzmvg*{ AR + ggsft»gn“ as,
— Sy — 12w
= PR + I + —?\- ==

7
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7 Surface Integrals

Class Learning Goals

1. Calculate surface integrals of vector fields.

(a) Given an explicit surface, z = g(z,y).

(b) Given a parametric surface, r(s,t).

2. Recognize the physical interpretation of the above calculations.

Now we are ready to transition into surface integrals of vector fields.

Definition(s) 7.8.

If F is a continuous vector field defined on an oriented surface S with unit normal vector n, then the
N \ __’_\
Su\v—‘cm Le \-\‘kem\ of F over S is
Q

RERGEE

This integral is also called the ; l“\i of F across S.

To help evaluate these we need to determine a more concrete formula for n. /\k

1. If the surface is defined parametrically by r(s,t), then
[rgx | Asdt

[[pmas- ([ Fatee
= “ E - xlrsxry) st
P

2. If the surface is defined explicitly by z = g(«x,y), then

.ndS = . ) A L3 “. = g, 8-
R S Y (e

2 Notes: The n in the explicit equation should look familiar from 14.4 (Tangent Planes). All these + signs are determined

e surface’s \ Jc -‘:" X~ [4-4,) - &=2,)=0
by the surf: Oremial o | k( &&%"t ‘D’ 3
2= 3(%,\&)
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Example 7.9. -

Find the (outward) flux of vector field F = (z,y, ) across the sphere parametrized by r(s,t) = (sin s cost, sin ssint, cos s) with
—R. — ——
s € [0,7], t € [0,2x]. Hints: Recall ry x ry = (sin® scost,sin” ssin¢,sinscos s), [ sin® u du = 4/3, and fo% sin? u du = 7.

—_— e ————————————

F:(\Ax: R F'tlg = ( F-t(r‘sxm_) D\SLU:
5 D

gv(

ST.: ]Sﬁ —I::Q = [ '
r < ( S—:<C"—DSS/ S‘\OSS"-—\‘E.) S\*\Scp;-‘;> ) <5":5<"5J‘,"~"‘kss'\-n‘:)§-“"s\coss\> dsdt
X, = P
s \/ O/ O>

m
S <2,\0Jx> i T as%ls‘-n"‘ss'\.\k)s;,. ScosSY ds kit
()

0

—_—
= =

’{:1 [au;t “js]: + [s-.: (%ﬂ Ji

= ("J‘ S—S‘n‘-{)\‘t — LII
o 2 3

—~(m .
_S f(sm‘s s S Lvs{'. + Sv\ss g’x;\"-k -\-s{«\"‘s cos s coé‘k) »Ls o&
—_—
o Jo
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Remark 7.10.

Unless otherwise specified assume that your closed surfaces are always ’Dcsl% ‘V{ L} Oﬂ%‘l’a{k .

I Co u“f\w\' A)U

Example 7.11.

Evaluate / / F - dS, where F = yi 4+ xj + zk and S is the boundary of the solid region E enclosed by the paraboloid
s

z=1—22 —y? and the plane z =0
—_———

N
D
L=
i . — : DU
H?F 4P [[D<\%JXJ1> Y ;\,‘) laz ‘> -L;Jx

Sg <~3,x,l->:--§> . <'Lx,'ka,I§ J..aal.x

)

g Qx\\-rlxvhﬂ-—{('-..\g A_}AK

D

d
([ e cno1-Jgdede

n

= r—“ Es‘.-\ecn’e"' —,.:—_-"*3—,(] {28
>

"-1'\

(S
- s\ © A
= L™ +50

= \ _
w@= 7

T
”b F OB = SL Y- {o,0,1Y Ly

SS -2 J.»ao\x :GO A =0

F-Ef”rf-ﬁ+q e.df - Dvo=L
< % D

Remark 7.12. In the flux definition:

J[F-as= [[Ponas

We can interpret this calculatiorz_jas g\AW\W\\“\»D\, up movement of particles induced by the e ctor '(:\‘e-lA
-
across the surface S (Hence the F n_).
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Group Work

1. Find the upward flux of F = (z,y, z) across the portion of the plane x + y + z = 1 inside the cylinder z2 + y? = 1.
N\

T=| %y

s D

]

SS CTARSV RGPV VN

D

u

x> 4S = S<x,»m|-x-~a>- -1, A1y dA

AN

SS | A =R
D
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2. Evaluate the surface integral: / / (v, 4x, 2%) - dS
s

where S is given by cylinder 22 + 32 = 1 above the zy-plane with positive orientation and 0 < z < 2.

IS

2= l“\.g

gg <yt :£>.(1§ x5 - 2o 2= 1% dA
S D

l—a /
,
<uk’5f\><) EANS <0/ —%/\‘? JA
D

|
(7
D

| (5l

o -

1
= x: [-—"h( J\_—_LS' - ‘9/31 _“ dx.

SN CER P

o
= 2
3
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-~

8 Stokes’ Theorem

Class Learning Goals
1. Understand the upgrade from Green’s Theorem to Stokes” Theorem including the statement of Stokes’” Theorem.

2. Practice turning surface integrals into line integrals

3. Practice turning line integrals into surface integrals

As we saw in 16.5 Green’s Theorem can be expressed as

Green’s Theorem C is a closed curve that bounds D in the zy plane.... blah blah other conditions.

/F dr—// (curl F) de

= QPy

We can easily upgrade C' to a curve in space bounding a surface S. r can parametrize C' and F can be a vector field in three

dimensions. The question becomes how do we upgrade L‘? What was special about it in Green’s Theorem? D Ik

\

Y1

Theorem 8.1 (Stokes’ Theorem). <
(&

X
Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C'

with positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region

in R3 that contains S. Then S

‘FA;‘= C.ule:: &S

R
Remark 8.2. \/

It is important that n is an © 'P\n-"’\’}\ Po \’\‘l'\ ""0\ wn \‘\( normal vector and C' is

Pa€ \*\ "f—\")\ or \'Q”'\-‘:'QA\ when viewed from above. The can be generalized using the

8 \ ‘3‘\/\{ )’\O\V\A r\l\.\Q__ . As your fingers go around the Came your -H'\UW"JO will point in the direction of
the U\V\\* nof vvw\\ vetor

Remark 8.3.

Unlike some theorems, Stokes’ equal sign is really a two way street.
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Example 8.4.

Use Stokes’ Theorem to compute the integral / / curl F - dS, where F = (xz,yz,2y) and S is the part of the sphere
s

22 4+ y? + 22 = 4 that lies inside the cylinder z2 + 4% = 1 and above the zy—plane.
=3 I

2=03 S F-daF = <x.z,11,x\%§-&?’
C c

s

()= Lcost sink T > ";eco,‘l:ﬂ:)

—— /J — /
t=o Q)= Esin L/ c_bs{/Q>

-

A2

S dxx ;4 xw} <-Sm’t c,osf O§ PV

o

§

g uq,{r Sia Els§nkmt>' <‘S§v\’t, c,oS‘tJ O§ au;

(¢]

&‘“ Rsatesst + B s\akcegk+ O X
g“ 0dt =0

Remark 8.5.

This real difficulty in these problems identifying the boundary curve of the surface and making sure your parametrization

orients the curve correctly.
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Example 8.6.

Evaluate / F - dr, where F(x,y,2) = —y?i + 2j + 2%k and C is the curve of intersection of the plane y + z = 2 and_the
c

cylinder 22 + y* = 1. (Note: C is to be oriented counterclockwise when viewed from above.)

SS curl F - 48 2=y

s

\ ) l«
TRF = | U Ysy = (0 -0 Jr Uk
—{ x <

= <o)ojl-ﬂ.\z>

Lo,0,l40yy-t<0 -( -1V dA

: . s
g& 1424 dk = gg Q+Lesind)rdedo ad
o,

=\" t(‘" + 20 !
o —.: TS;-\SI AB
(T 3o

Remark 8.7.

If we wanted to evaluate the line integral in Ex 8.6 we would end up integrating:

2
/ (sin®t + cos?t — 4 cost + 4sintcost — sin’ t cos t)dL.
0
Remark 8.8.

The surface in Ex 8.6 is not unique. However it is clearly the correct choice.
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Group Work

Let S be the surface formed by capping the piece of the cylinder 22 + 32 = 2, 0 < z < 4 with the top half of the sphere
24y + (2 -4 =2.

1. Draw a rough sketch of S.

s =3
(,\ -

2. What is C = 9057 Parametrize C so that it has a positive orientation with respect to the outward normal.

Cie@® =T cosk, & stk o>
-l:e(o)L’.C]

3. Evaluate // curl F - dS, where F = 7{—1—27@—{—30 z éw—i—y,z x?
s

0
TR
S F.d&° = 2 (—DSL,ES‘\’\{,°>-<—ES:V‘£IE cest, o7 &

c Q

Sm°3"‘= o)

)]
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8 Stokes’ Theorem

Class Learning Goals
1. Tolerate the idea of the proof of Stokes’ Thoerem.

2. Cement your knowledge of how to use Stokes’ Thoerem.

Recall the statement of Stokes’” Theorem

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth
boundary curve C with positive orientation. Let F be a vector field whose components have continuous partial derivatives

on an open region in R? that contains S. Then

/CF-dr://S(curlendS

Today we will start by trying to gain an intuitive idea of what Stokes’ Theorem is trying to convey.
Remark 8.9 (Idea of a Proof of Stokes’ Theorem). @
First we must verify that curl F has something to do with circulation.

Originally we considered circulation around a point when things rotated in the zy-plane perpendicular to k.

Now there could be circulation in the zz-plane perpendicular to j and circulation in the yz-plane perpendicular to i. We want
to consider all three types of circulation. To help us we will create a vector to try to capture all these pieces of information.

(Circulation in the yz-plane)i 4 (Circulation in the zz-plane)j + (Circulation in the xy-plane)k

C'urcw‘e\“' o
Picture: Xy flo.u.

&,
=

Cirewlation C;r:.v.\td';b'\
- »az.—?\-\v\l.. 0 xz—f\«wn_
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We already know from before that:
(Circulation in the zy-plane) = Q, — P,

Spending a long time drawing pictures of rectangles like these:

(et &v) F-&9 (o ooyt o) We can get the circulation in the other two planes. Mainly:
-E = (Circlulation in the zz-plane) = P% *Rx
4 = Circlulation in the yz-plane) = -
( yz-plane) R\% Q,
@ ) F ) @+ Az y) And we can see there is some beautiful symmetry happening here.

So we get our mega vector that considers the circulation in all three coordinate planes:
Mega Circulation Vector = (R, — Q,, P, — Ry, Qz — Py)

But Mega Circulation Vector isn’t very official and won’t make it into any math books so instead we recognize it as curl F.
\.

It helps us measure the rate of rotation that is occurring at every point in the vector field.
To finish up we need to remember that Circulation (even at a point) needs to be a number

(Recall 0 circulation means no rotation, + circulation is counterclockwise, - is clockwise) So we need to turn this Mega
Circulation Vector into a number. ..
In addition since our ”"water, beads, particles, etc” are trapped on a surface we really don’t care about certain directions.

So it makes a certain amount of sense to have:
Circulation at a point = C\M‘l F ' n

where n is a unit normal vector to the surface’s tangent plane at that point.

And this is how we finally see that curl F - n = Circulation at a pt.
Now we can use a similar argument to Green’s Thoerem to get

Z(Circulation around boundary of S) = Z(Circulation around each point in )

gf’-c\? - (0wt F3 as

S
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Example 8.10.

Evaluate / / (V x F) - dS where F = zyzi + zyj + 2%yzk where S consists of the top and the four sides (but not the bottom)

S —_—
of the cube with vertices (+1,+1,£1).

Note: WW # 3 has you doqj_chis by applying Stokes’ Theorem once. Here we will be extra clever and apply it twice!

CRDNI =
U T O
X S\g;, - ggsc\r\r\F . A‘Z

Ly K
VXF = Yax M=
Xval 2‘)‘&3}

(Xx2-0 )i —(‘Lx\.'t -'J(vk) yvE (“b—x’g K

{ >-<L=t’ x%-ﬂwg, U&-x’-l>
([ <x"1;o\—1x 2 )\%—X-'Lﬁ : O\g = KS «";, ?X\%, X_"\ﬁ' 5-r <°) °/"‘> dA
S . ((D
XA AA
5 A’

|
=] [ Ay

-1 7=\

£
&
>

v ! a |
g S [x\p-%l_\\ x = tx -\-{1— ]:—x-\-%_-l dx
A =) -1

n

|
Cawaes L= 07-0 =0
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Example 8.11.

S F- a7 E-’-(thlo,cb

12. (14 pts) on SS01 Final Exam. "

Use Stokes’ Theorem to evaluate // V x (yi) - dS where S is the hemisphere: 2% +y? + 22 = 1,2 > 0.
s

%vﬁ“"" B-J\;_—E_Qb
'QDT %“ 'g :n()\

(58

2 | 4+ cos(2u) L
oS u = % , S\WN\ u =

\ - ces(2w)

2

cl)=<cost siak 0y
-té CO "u\’k

8 <"k;°/°> - Af

c

|

1Y
gA dsink, 0,0 {53k cost /°> ak

()

= S‘:t —swnd dt

- Losld)
_ - cos(z
[ e

o

= =K
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Group Work

1. (15pts on E4 - FS14) Use Stokes’ Theorem to evaluate // curl F - dS where ¢
s

F(z,y,2) = xyzi + 22yj + 2%yzk and S consists of the cylinder
y? + 22 =1, 2 € [~1,1] along with the disk y? + 22 < 1,2 = —1, oriented
outward, shown to the right.

il

(a) Identify and parametrize the boundary curve of S with the correct orientation.

cx)=<¢ |)COs't:S§r\.t>
+t < (o,

=0 r()=<1,1 0>

'l?-:]-'t{ r(f_{.):<'/°:\>

(b) Write / / curl F - dS as an equivalent line integral and then evaluate.
s

i\

), 7 - g
|

oy
{xw, vaa,x"\%::)- L6,-Sint,-cost) dt

0

™

< -sintcost ek, -siatcost) - <6, -Sint,-cost) At

tx
= S ~“Asintostrsitkadt At

o

LY (5
c L st
Lot - et |7 2 8
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9 The Divergence Theorem

Class Learning Goals
1. Understand the statement of the Divergence Theorem and when it can be applied.

2. Apply the Divergence Theorem to problems

Let’s quickly upgrade the alternate version of Green’s Theorem so we can start doing some problems.

Recall from 16.5

Green’s Theorem Alternate Bunch of conditions up here.

B oP  0Q
—
://dideA
D

This can be naturally upgraded to

Theorem 9.1 (The Divergence Theorem).

Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F
—

be a vector field whose component functions have continuous partial derivatives on an open region that contains £. Then

?2&3 = du F :N
S €

The main condition here is that S needs to be CIDQA .
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Example 9.2.

Evaluate // F - dS where F = (zy, 3% + ¢*" sin(zy)) and S is the surface of the
S -
region E bounded by the parabolic cylinder z = 1 — 22 and the planes z =0, y = 0,
T
and y + z = 2.

B
A
iy

o
W\
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Example 9.3 (FS 01 Final Exam).

12. (16 pts) E is a solid region in the first octant that lies beneath the plane 2z + 3y + 2z = 6. Let S be the boundary of F

(S consists of 4 triangles). If F = LQ.I +92j + 2%k use the Divergence Theorem to write / / F - dS as a triple integral.
- - s

Do not evaluate the integral.

Il
=3

(e -/

og ., Qﬁx—f)x{\'}%)dla‘ac"x

o

Example 9.4 (SS14 Exam 4 Question).

(18 points) Consider the surfaces S from Exam 3 shown below:

z = 3 y = 3

y = x z = 4—x

Calculate the flux of F = (3z + tany)i + (y — In(z 4+ 1))j + (3zy — 22)k outward /

through S. (Hint: the volume enclosed by S is 24 — 131/3)

Flux = Hg?: ds = KL Ly F dv
= me3+\~1 a/
([ 2av =2 (((1dv

c

A E’H - B\Jﬂ

]

U
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MTH234

Group Work

2 .3
Consider F = <%, %, zx2> over the surface S, where S is the cylinder 2% 4+ y? = 1 capped by the planes z = +1.

1. Is the net flux of F from the surface positive or negative?

L RS YR S N
o F= &+ 3+ X = Xoy
-\

Swe >2L+\£'>.O o\luauas
P net Flax s (‘\‘3

2. What is the value of the flux across S?

Flax= ﬂ; Fads =

)
e
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Challenging problem

£

3. Evaluate / / (x4 v+ 2z) dS, where R is the solid sphere 2% + y? + 2% < 4 using the divergence theorem.
S=0R

Fon-= xn&'—\-&z

/

“S F.ads

n

e s

n 'ns a w\a‘ nory\.qj \,e_c’kcm 'Fo(‘

S'. xl*\q&"+€=‘-\ "Do'm'\'\.r\aa L""'\-\--"\"‘k

<'A‘7.J'lv‘ )3'2;> \s [ mr‘w@.\

vedto, that s bm'\'wqﬁé\ ']DOV\'\';"\%

(9“"1‘,\- \> </j;> \7
Jaamts Jopd '

S. <PQ :R>'<7: 2 J-f>= Xry o+ &2
P23 G2y 7

(20 ~a4xd] = (Ha
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9 The Divergence Theorem

Class Learning Goals
1. Pay our respects by going through a proof of the Divergence Theorem

2. Try a few more Divergence Theorem Problems

The Divergence Theorem
Let E be a solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F be a

vector field whose component functions have continuous partial derivatives on an open region that contains £. Then

J[®-nas= [[[ awrav

Idea of Proof Here I will give a more rigorous proof then I do normally. Those pursuing a degree in Mathematics should

pay extra attention to this proof technique as it is a common technique used again and again, that is:

1. Proof in a SP-O.C{ 0\‘ cosSe

2. How to expand the special case to a general re.a {or\_

3. How to expand the special case to a general \]Q_C\’Or ‘F;‘L\A

Proof in special case: F = (0,0, R) and E is e k' 1M \'Q . 2z

F is called vertically simple if:
v 0 2.(%,4)

1. FE is bounded on top by z = 2z3(x,y) and on bottom by z = z1(x,y) where =

and y for these surfaces are over the same planar region D.

2. F includes all line segments from z1 (o, yo) to z2(xg, yo) where L

M

[¥

xg, Yo are in D.

2(,%)

Now let’s expand the right hand side of the divergence theorem

///E div F dV = ﬁg Ra(x,4,3) &V

g mﬁﬂt ) dadyde
x4 2) dxdy dx
], Fatam dody

- Sg ey, 2~ Koy 2,009 dud
D
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Now we evaluate the left side to hopefully get the same thing:

//SF.ndS: ﬂ F .ndS +§§S:h1:5.h;\5+(( E-ndsS

TDP

Y %
[ o> XCR By

Co,0 Ry - T~ —~ o> LA

Sides

[, <o 5 o da

top

[ - 0g,2) b Wikl ((hf(x.m Lyl

I
—

Bottom

S D—Nx;\ '?.\(x;-l‘)) A\)AK + g\(p-ﬁ(k,‘tl%zb‘f\)) &1 R

W @L"J“&)%LX,\QS —Rix M ﬁ,(xﬂ\)ﬂ .Lko\x

)]

How to expand the special case to a general region
Any region can be decomposed into into the sum of vertically simple regions.

Compute the surface integrals and triple integrals over each one.

How to expand the special case to a general vector field

[ wis fff v
J[ee.r ey as= [[[ @4 r v
[ o aras a5 [[] 2 0
([ prvas s [[amass [ maas— [ roav [[] avavs [[] nav
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We have already shown that / / Rns dS = / / / R, dV. Similar proofs can be used to show
s E

HSP"' 45 = KQY" A and g(senl ds =Hf€ Qy W
Example 9.5. ‘ _Q,

Evaluate the surface integral / / (rz,—2y,3x) - dS where S is the sphere 2% + y? + 22 = 4 with outward orientation.
s

i

€

2-a+0 AV = m%c\v —IQLI dv
€

= L8 = — 1 ¥ = = 6_"_“'_
) ‘ ﬁ (ecosd-D)¢'sinb 0 A0 0 -3 (k4] :
o ‘070

= 1x \':g: Csig cosd -2 €5t Ledd

=2 ("€ sipenst -5 Csa ] A9

= 2% (‘: [9siaPeost - st b 4O

ox [2sg+ %asﬂ:

(A [% 0 - '3"—(0} el [‘ﬂ[—ﬂ =7 ‘si“

Find / / F - dS where F(z,y,2) = zi + yj + zk and S is the outwardly oriented surface shown in the figure below.
s

gfg 3

€

u

Example 9.6.
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Example 9.7.

Prove that / / curl F - dS = 0 assuming S and F satisfy the conditions of the Divergence Theorem and the scalar functions
s

and components of the vector fields have continuous second-order partial derivatives.

mé o AN

g“\ dw (cud F) AV
=0

In

€

Example 9.8.
Use the Divergence Theorem to evaluate / / (22 +2y + 2?) dS where S is the sphere 22 + y? + 22 = 1.
s
- ) 1= 4, 2420

E(%’,;:““>'<>‘AF\ 7 “; £ ds N=G R
]
g(f A E v

€
N

(AR

1

g
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Group Work

1. Compute // F-dS where F=(z—2)i+ (y—2)j+ (z —y)k
S=0R

and S is the cylinder 22 + y? = 1 capped by the planes 2z = 1 — 2 and 2z =z — 1.

div T= [+1+1[ =3
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