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1 Vector Fields

Definition(s) 1.1.

1. Let D be a set in R2 (plane region). A vector field on R2 is a function F that assigns to each

point (x, y) in D a two-dimensional vector F(x, y) .

2. Let E be a set in R3. A vector field on R3 is a function F that assigns to each point (x, y, z)

in E a three-dimensional vector F(x, y, z) .

Let’s practice by sketching a vector field.

Example 1.2.

Sketch the vector field:

F(x, y) = h�y, xi

on the graph below.

x

y
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Today we are upgrading to a new level of function:
Let’s talk about dimensions really quick:
So far we have function that take:

Dimensions Equation Example Picture

1 dimension ! 1 dimension
y = f(x)
or
x = x(t)

y = 2x2 � 3
or
x(t) = 3t� 1

2 dimensions ! 1 dimension z = f(x, y) z = x

2 + y

2

3 dimensions ! 1 dimension T = f(x, y, z) T = xy

2 + 2z

0

0

0

0.1

2.1

4.1

2.0

2.2

2.4

5.2

5.2

5.2

�1.2

�1.2

�1.2

5.4

5.4

5.4

2.3

2.3

2.3

1

1

1

0.0

2.2

4.4

1 dimension ! 2 dimensions
r(t) = hx(t), y(t)i
or
r(t) = x(t)i+ y(t)j

r(t) = h2t, sin ti
or
r(t) = 2ti+ (sin t)j

1 dimension ! 3 dimensions

r(t) = hx(t), y(t), z(t)i
or
r(t) = x(t)i+y(t)j+z(t)k

r(t) = h2t/5, sin t, cos ti
or
r(t) = 2t/5i + (sin t)j +
(cos t)k
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and so you can see we are missing some pieces still!

These missing pieces will be called vector fields and they are our friends for the
rest of the semester.

1

2

3

1 2 3

f
r
o
m

D
i
m
.

to Dim.

X

X

X X X

Dimensions Equation Example Picture

2 dimension ! 2 dimension
F(x, y) = hP (x, y), Q(x, y)i
or
F(x, y) = P (x, y)i+Q(x, y)j

F(x, y) = hx2

y, 2y � xi
or
F(x, y) = (x2

y)i+ (2y � x)j

3 dimension ! 2 dimension

F(x, y, z) =
hP (x, y, z), Q(x, y, z)i
or
F(x, y, z) = P (x, y, z)i +
Q(x, y, z)j

F(x, y, z) =
hzx2

y, 2y � x� zi
or
F(x, y, z) = (zx2

y)i + (2y �
x� z)j

2 dimension ! 3 dimension

F(x, y) =
hP (x, y), Q(x, y), R(x, y)i
or
F(x, y) = P (x, y)i+Q(x, y)j+
R(x, y)k

F(x, y) = hx2

y, 2y � x, 3xyi
or
F(x, y) = (x2

y)i+ (2y� x)j+
3xyk

3 dimension ! 3 dimension

F(x, y, z) =
hP (x, y, z), Q(x, y, z), R(x, y, z)i
or
F(x, y, z) = P (x, y, z)i +
Q(x, y, z)j+R(x, y, z)k

F(x, y, z) =
hzx2

y, 2y � x� z, 9z sinx cos yi
or
F(x, y, z) = (zx2

y)i + (2y �
x� z)j+ (9z sinx cos y)k

3
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Here are some pretty pictures from the book.

Vector fields can represent many di↵erent things. The main applications we will focus on are:

1. Force (wind, magnetism, gravity)

2. Velocity

We have technically seen vector fields before even though we never used it’s full potential. Any guesses?
Gradient

Definition(s) 1.3.

1. A gradient vector field is vector field found by taking the gradient of a function.

Ex: f(x, y) = x

2 + y

2

2. A vector field F is called a conservative vector field if it is the gradient of some

scalar function, that is, if there exists a function f such that F = rf . In this situation f is called a

potential function for F.

Ex: h2x, 2yi is conservative because it has the potential function f = x

2 + y

2.

4
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Example 1.4.

Figure may be scaled down

Which of the vector field describes the plot to the left?

1. hx, x� yi

2. hy, x� yi

3. hx, x+ yi

4. hy, x+ yi

Example 1.5.

Find the gradient vector field of f(x, y) = 2xy + 3x� e

�xy

5
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Group Work

1. For each of the following functions, draw level curves f(x, y) = k for the indicated values of k. Then compute the

gradient vector field, and sketch it at one or two points on each level curve.

(a) f(x, y) =
x

2

4
+

y

2

9
; k = 1, 2, 4

x

y

�6 �4 �2 2 4 6

�6

�4

�2

2

4

6

(b) f(x, y) =
y

x+ y

, x 6= �y; k = 1/2, 3/4, 2

x

y

�4 �3 �2 �1 1 2 3 4

�4

�3

�2

�1

1

2

3

4
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2 Line Integrals

Remark 2.1 (Things to remember from past sections).

1. A vector representation of a line segment that starts at r
0

and ends at r
1

is given by

r(t) = (1� t)r
0

+ tr
1

, 0  t  1

2. Arc length function s(t) =

Z t

a

s✓
dx

du

◆
2

+

✓
dy

du

◆
2

du

3. Taking the derivative with respect to t we get

ds

dt
=

s✓
dx

dt

◆
2

+

✓
dy

dt

◆
2

4. We can express this as ds =

s✓
dx

dt

◆
2

+

✓
dy

dt

◆
2

dt

Theorem 2.2.

The arc length of a curve C parametrized by r(t) is given by:

Z

C
1 ds

This is a natural ideal because now all our measure of “volume” can be written as integrals of 1.

1. Volume of E =

ZZZ

E
1 dV

2. Area of R =

ZZ

R
1 dA

3. Length of C =

Z

C
1 ds

And just as in CH15 we integrated other functions in our double in triple integrals we also would like to integrate other
functions here in our line integrals.

Definition(s) 2.3.

If f is defined on a smooth curve C, then the line integral of f along C is given by:

Z

C
f(x, y) ds =

Z b

a
f(x(t), y(t))

s✓
dx

dt

◆
2

+

✓
dy

dt

◆
2

dt

Note: smooth curves are defined in 13.3 as continuous and having a parametrization r(t) such that r0(t) 6= 0.

1
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Although we are defining these as planar curves we can easily upgrade to space curves by “sprinkling in zs”

Definition(s) 2.4.

Z

C
f(x, y, z) ds =

Z b

a
f(x(t), y(t), z(t))

s✓
dx

dt

◆
2

+

✓
dy

dt

◆
2

+

✓
dz

dt

◆
2

dt

Notice in both of these cases Z

C
f ds =

Z b

a
f(r(t))|r0(t)| dt

Example 2.5.

Suppose you are a whale who is eating plankton as he/she swims through the ocean. The plankton are spread all throughout
the ocean with a function p(x, y, z) = � 1

⇡ (10 + z + x). You (the whale) are chilling out at (1, 0,�12) are about to swim
around in a circular curve; C : x2 + y2 = 1, z = �12
How many plankton do you eat?

Now let’s learn two other cool things line integrals are good for.

2
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How many bricks it takes to build the Great wall of China - Or area under space curves

So the book has a beautiful picture of this:
Example 2.6.

A portion of the great wall of china can be parametrized by
r(t) = h2 sin t, 2 cos ti t 2 [0,⇡] where the height is given by
H(x, y) = xy2 meters. Each brick has a cross-sectional area of
100 cm2. How many bricks are needed to build this portion of the
great wall of china?

Z ⇡

0

8 sin t cos2 t
p
(2 cos t)2 + (�2 sin t)2 dt

Z ⇡

0

8 sin t cos2 t
p
4 dt

16

Z ⇡

0

sin t cos2 t dt

�16
⇥
cos3 t/3

⇤⇡
0

= �16
⇥
cos3 ⇡/3� cos3(0)/3

⇤

= �16 [(�1)/3� (1)/3]

= 32/3 m2

= 32/3 m2

100 · 100 cm2

1 m2

= 32/3 m2

100 · 100 cm2

1 m2

So therefore we need

= 32/3 m2

100 · 100 cm2

1 m2

1 brick

100 cm2

= 3200/3 bricks

How heavy stu↵ is (given a density function)

Example 2.7.

Suppose I have a nice spring that seems to follow the curve r(t) = h3 sin t, 3 cos t, 4ti with t 2 [0, 8⇡] which happens to have a
density function of �(x, y, z) = 10� x� y g/cm. How heavy is the spring?

Z
8⇡

0

(10� (3 sin t)� (3 cos t))
p

(3 cos t)2 + (�3 sin t)2 + 16 dt =

Z
8⇡

0

(10� 3 sin t� 3 cos t)
p
9 + 16 dt

= 5 [10t+ 3 cos t� 3 sin t]8⇡
0

= 5 [80⇡] = 400⇡ grams

3
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Now let’s consider a special case where f(r(t)) = F(r(t)) · r

0(t)

|r0(t)| . This gives us a way to do line integrals over vector fields!

Definition(s) 2.8.

Let F be a continuous vector field defined on a smooth curve C given by the vector function r(t), a  t  b. Then the
line integral of F along C is

Z b

a


F(r(t)) · r

0(t)

|r0(t)|

�
|r0(t)| dt =

Z

C
F ·T ds

=

Z b

a
F(r(t)) · r0(t) dt  � working def

=

Z b

a
F(r(t)) · dr

If F(x, y) = hP (x, y), Q(x, y)i and r(t) = hx(t), y(t)i then

=

Z

C
P dx+Q dy

If F(x, y, z) = hP (x, y, z), Q(x, y, z), R(x, y, z)i and r(t) = hx(t), y(t), z(t)i then

=

Z

C
P dx+Q dy +R dz

So besides a great way to torture math students what is this used for? Work

Theorem 2.9.

Take F to be a force field then the work done by the field over the curve C is given by

W =

Z

C
F ·T ds

Idea of proof:

Recall

W = F ·D (where D is displacement vector)

So if we consider the work that the force field is doing at each point on the curve we have:

W
at a point

= F ·T (see picture for idea)

Summing these all up over the curve we get

W
over the curve

=

Z

C
F ·T ds

4
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Example 2.10.

A picture of the force field F(x, y) is given below. Determine if the work in moving a particle along the quarter circle

x2 + y2 = 1 from (0, 1) to (1, 0) is positive or negative using the picture.

1

1

Think overall is the vector field helping or hurting the particle moving along the curve

Example 2.10 (again).

Find the work done by the force field F(x, y) = hx2,�xyi in moving a particle along the quarter circle x2 + y2 = 1 from (0, 1)

to (1, 0).

5
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Group Work

1. Evaluate
R
C y dx+ z dy + x dz where C consists of the line segment C

1

from (2, 0, 0) to (3, 4, 5), followed by the line

segment C
2

from (3, 4, 5) to (3, 4, 0).

2. What is the calculation in 1. telling you (in terms of Work)?

6
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3 The Fundamental Theorem for Line Integrals

Warm up:

Calculate the line integrals
R
C

F · dr from (0, 0) to (1, 1) in the vector field F = h2x, 2yi.

1. Where C is parametrized by ht, ti t 2 [0, 1]

2. Where C is parametrized by ht, t2i t 2 [0, 1]

3. Where C is parametrized by hsin
�
⇡t

2

�
, t

2i t 2 [0, 1]

4. Where C is parametrized by the picture:
(0, 0)

(1, 1)

(1.) Z 1

0
h2t, 2ti · h1, 1i dt =

Z 1

0
4t dt =

Z 1

0
2t2 dt = 2

�����������������������

(3.) Z 1

0
h2 sin

✓
⇡t

2

◆
, 2t2i · h⇡

2
cos

✓
⇡t

2

◆
, 2ti dt =

Z 1

0
⇡ sin

✓
⇡t

2

◆
cos

✓
⇡t

2

◆
+ 4t3 dt

Z 1

0
⇡ sin

✓
⇡t

2

◆
cos

✓
⇡t

2

◆
+ 4t3 dt =


sin2

✓
⇡t

2

◆
+ t

4

�1

0

= 1 + 1 = 2

1
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After doing 1,2,3 hopefully we would all conjecture the answer to 4.

So what is so special about the vector field F = h2x, 2yi? It seems like no matter the path we choose we always get the same

answer! (How nice). This has a nice name:

Definition(s) 3.1.

Let F be a vector field defined on an open region D in space, and suppose that for any two points A and B in D

the line integral:
R
C

F · dr along a path C from A to B in D is the same over all curves. Then the integral is called

path independent in D.

And so we need to develop some mathematics to help us know when a field is going to be path independent or not. It turns

out that Path Independant fields are Conservative .

Theorem 3.2.

Suppose F is a vector field that is continuous on an open connected region D. If

Z

C

F · dr is independent of path in D,

then F is a conservative vector field on D; that is, there exists a function f such that rf = F .

Definition(s) 3.3.

1. A region D is open if for every point P in D there is a disk with center P that lies entirely in D. (So D doesn’t

contain any of its boundary points.)

2. A region D is connected if any two points in D can be joined by a path that lies in D.

3. A curve is called closed if its terminal point is the same as its initial point.

4. A simple curve is a curve that doesn’t intersect itself anywhere between its endpoints.

5. A simply-connected region in a plane is a connected region D such that every simple closed curve in D encloses

only points that are in D.

pictures

2
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Looking at F = h2x, 2yi again. Can you find any functions f(x, y) who have gradient h2x, 2yi?

Moreover please notice that f(1, 1)� f(0, 0) = 12 + 12 � 02 � 02 = 2

Thats to say that in our case Z

C

F · dr =

Z
B

A

rf · dr = f(B)� f(A)

HUGE!!!! FUNDAMENTAL THEOREM

Theorem 3.4 (Fundamental Theorem of Line Integrals).

Let C be a smooth curve joining the point A to the point B in the plane or space and parametrized by r(t). Let f be a

di↵erentiable function with a continuous gradient vector F = rf on the domain D containing C. Then:

Z

C

F · dr = f(B)� f(A)

equivalently: Z

C

rf · dr = f(B)� f(A)

Theorem 3.5.

Z

C

F · dr is independent of path in D if and only if

Z

C

F · dr = 0 for every closed path C in D.

So here is where we sit:

1. We like conservative vector fields because they are path independent.

2. We like them even more because if we can find their potential function then line integrals are extremely easy to

calculate.

Here are the natural questions we need to ask:

1. Given a vector field is there a way to tell if it is conservative ?

2. Okay we know we have a conservative vector field... How can we find the potential function ?

3
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and very importantly we have:

Theorem 3.6 (Component Test).

Let F = P (x, y)i+Q(x, y)j be a vector field on an open simply-connected region D. Suppose that P and Q have continuous

first-order derivatives and
@P

@y

=
@Q

@x

, throughout D

Then F is conservative .

Finally! it’s example time!!!!

Example 3.7.

Consider the vector field F = hex cos y + y, x� e

x sin y + 3i.

1. Show that F is conservative over its natural domain

2. Find a potential function for F.

3. Evaluate
R
C

F · dr where C is the curve parametrized by r(t) = ht, sin ti and t 2 [0, 1]

Remember P = f

x

and Q = f

y

. Think about what that tells us.

4



MTH234 Chapter 16 - Vector Calculus Michigan State University

Remark 3.8 (Technique for finding potential function).

1. Integrate
R
P dx to get f + g(y) .

2. Try to solve for g(y)

(a) Di↵erentiate f + g(y) with respect to y and set it equal to Q.

(b) Solve for g0(y) .

(c) Integrate g

0(y) with respect to y to get g(y).

Example 3.9.

1. Show that for F =
D �y

x

2 + y

2
,

x

x

2 + y

2

E
we have

@P

@y

=
@Q

@x

.

M

y

=
(�1)(x2 + y

2)� (�y)(2y)

(x2 + y

2)2
=

y

2 � x

2

(x2 + y

2)2

N

x

=
(1)(x2 + y

2)� (x)(2x)

(x2 + y

2)2
=

y

2 � x

2

(x2 + y

2)2

Since M

y

= N

x

, (and all else are 0) we have that it passes the component test. Now let’s evaluate the line integral:

2. Show that
R
C

F · dr = 2⇡ where C is a loop parametrized by r(t) = hcos t, sin ti, t 2 [0, 2⇡]

Solution.

Z

C

F · dr =

Z 2⇡

0
h �y

x

2 + y

2
,

x

x

2 + y

2
i · h� sin t, cos ti dt

=

Z 2⇡

0
h� sin t

1
,

cos t

1
i · h� sin t, cos ti dt

=

Z 2⇡

0
1 dt = 2⇡

3. Does this contradict Theorem 3.5?

5
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Group Work

1. The figure shows a curve C and a contour map of a function f whose gradient is continuous. Find
R
C

rf · dr.

2. Consider the vector field F = (3 + 2xy)i+ (x2 � 3y2)j

(a) Determine that F is conservative using the component test.

(b) Find a function f such that F = rf

(c) Evaluate the integral
R
C

F · dr, where C is the curve given by r(t) = het sin t, et cos ti, 0  t  ⇡.

6
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Note: We currently do not have the correct theory in place to show that a vector field of 3 variables is conservative. However

if we assume it is conservative then we can find potential functions. Here is an example from the book (on page 1104) of how

to do this for 3 variables. Please read this through if you have trouble with your WeBWorK homework assignment.

7
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4 Green’s Theorem

Green’s Theorem gives a relationship between double integrals and line integrals around simple closed curves. (Start and end

at the same point. Are not self-intersecting except at endpoints.)

Draw picture of region D with boundary C. Positive and negative orientation.

Definition(s) 4.1.

1. A simple closed curve C has positive orientation if its parametrization traverses the curve exactly

once in a counterclockwise direction.

2. A simple closed curve C has negative orientation if its parametrization traverses the curve

exactly once in a clockwise direction.

Theorem 4.2.

Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C.

If F = hP,Qi have continuous partial derivatives on an open region that contains D then,

Z

C

P dx+Q dy =

ZZ

D

✓
@Q

@x

� @P

@y

◆
dA

or equivalently Z

C

F ·T ds =

ZZ

D

✓
@Q

@x

� @P

@y

◆
dA

The idea of the proof is important because it will come up again in

Stokes’ Theorem. The idea is “circulation”. Because we have a closed

simple curve the integral

Z

C

F ·T ds counts how the particles on the

curve are circulating. Green’s Theorem says that instead of counting how

the particles are circulating on the curve we can count how the particles

are circulating inside the curve.

picture here. breaking up and

canceling except at edges

1
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That is
X

(Circulation of points on curve) =
X

(Circulation of points inside curve)

Idea of Proof

>

F · (�i)

>

F
·
(j)

>

F · (i)

>

F
·(
�
j)

(x + 4x, y + 4y)

(x + 4x, y)(x, y)

(x, y + 4y)

So now we need to determine circulation at a point. First lets

consider circulation around small rectangles.

Along the 4 boundaries of the rectangle we get:

Top: F(x, y +4y) · (�i)4x = �P (x, y +4y)4x

Bottom: F(x, y) · (i)4x = P (x, y)4x

Right: F(x+4x, y) · j4y = Q(x+4x, y)4y

Left: F(x, y) · (�j)4y = �Q(x, y)4y

Grouping favorably we get:

Circulation of ⇤ = Top + Bottom + Right + Left

Circulation of ⇤ = �P (x, y +4y)4x+ P (x, y)4x+Q(x+4x, y)4y +�Q(x, y)4y

Circulation of ⇤ =
(�P (x, y +4y) + P (x, y))

4y

4y4x+
Q(x+4x, y)�Q(x, y)

4x

4y4x

Circulation of ⇤ ⇡ (�P

y

+Q

x

)4y4x

Now we need to scale from circulation on a rectangle to circulation at a point

Circulation at • ⇡ Circulation of ⇤
Area of ⇤

Circulation at • ⇡ (�P

y

+Q

x

)4y4x

4y4x

= Q

x

� P

y

=
@Q

@x

� @P

@y

And so now we are ready to see why we love Green’s Theorem

2
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Example 4.3.

Find the work done by F = h4x� 2y, 2x� 4yi once counterclockwise

around the curve given by the picture:
x

y

1 3

Solution. Let’s pretend we forgot Green’s Theorem on the exam.

To parametrize this curve correctly I need to break it into 4 pieces

Z

C

F ·T ds =

Z

BC

F ·T ds+

Z

TC

F ·T ds+

Z

LL

F ·T ds+

Z

RL

F ·T ds

Parametrizing the four pieces we see that (in a counterclockwise direction)

BC : r(t) = hcos t, sin ti t 2 [⇡, 0] r

0(t) = h� sin t, cos ti

TC : r(t) = h3 cos t, 3 sin ti t 2 [0,⇡] r

0(t) = h�3 sin t, 3 cos ti

LL : r(t) = ht, 0i t 2 [1, 3] r

0(t) = h1, 0i

RL : r(t) = ht, 0i t 2 [�3,�1] r

0(t) = h1, 0i

Let’s calculate these individual integrals

Z

BC

F · T ds =

Z
0

⇡

h4x � 2y, 2x � 4yi · r0(t) dt

=

Z
0

⇡

h4(cos t) � 2(sin t), 2(cos t) � 4(sin t)i · h� sin t, cos ti dt

=

Z
0

⇡

�4 sin t cos t + 2 sin

2

t + 2 cos

2

t � 4 sin t cos t dt

=

Z
0

⇡

�8 sin t cos t + 2 dt

= 2(0 � ⇡) = �2⇡

Z

TC

F · T ds =

Z
⇡

0

h4x � 2y, 2x � 4yi · r0(t) dt

=

Z
⇡

0

h4(3 cos t) � 2(3 sin t), 2(3 cos t) � 4(3 sin t)i · h�3 sin t, 3 cos ti dt

=

Z
⇡

0

�36 sin t cos t + 18 sin

2

t + 18 cos

2

t � 36 sin t cos t dt

=

Z
⇡

0

�72 sin t cos t + 18 dt

= 18(⇡ � 0) = 18⇡

Z

LL

F · T ds =

Z �1

�3

h4x � 2y, 2x � 4yi · r0(t) dt

=

Z �1

�3

h4(t) � 2(0), 2(t) � 4(0)i · h1, 0i dt

=

Z �1

�3

4t dt

=

h
2t

2

i�1

�3

= 2(1 � 9) = �16

Z

RL

F · T ds =

Z
3

1

h4x � 2y, 2x � 4yi · r0(t) dt

=

Z
3

1

h4(t) � 2(0), 2(t) � 4(0)i · h1, 0i dt

=

Z
3

1

4t dt

=

h
2t

2

i
3

1

= 2(9 � 1) = 16

Giving us our final answer of Z

C

F ·T ds = �2⇡ + 18⇡ � 16 + 16 = 16⇡

Now let’s imagine you remember Green’s Theorem.

3
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Example 4.3.

Find the work done by F = h4x� 2y, 2x� 4yi once counterclockwise

around the curve given by the picture:
x

y

1 3

Work =

Z
F ·T ds =

Z

C

(4x� 2y) dx+ (2x� 4y) dy

=

ZZ
2 + 2 dy dx

= 4

ZZ
1 dy dx (Area)

= 4
1

2
(⇡(3)2 � ⇡(1)2)

= 2(9⇡ � 1⇡) = 16⇡

Notation 4.4.

1. The notation I

C

P dx+Q dy

Is sometimes used to indicate that the line integral is calculated using the positive orientation of the closed curve C.

2. Another notation for the positively oriented boundary curve of a region D is @D .

Fun Reads

There is additional material in 16.4 that is covered in the book that MSU will not currently be testing on. Those wishing to

gain a greater understanding of the power of Green’s Theorem may wish to read the section on finding area using line

integrals (top of page 1111) and the section on Extended Versions of Green’s Theorem (starting on page 1111).

4
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Group Work

1. (WW#3) Use Green’s Theorem to evaluate the line integral

I

C

4 cos(�y) dx+ 4x2 sin(�y) dy. Where C is the

rectangle with vertices (0, 0), (2, 0), (0, 4), and (2, 4).

2. Calculate

I

C

(x4+2y)dx+(5x+sin y)dy where C is the boundary of region

shown to the right:
1

1

-1

-1

x

y

5
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5 Curl and Divergence

Before we get to Curl and Divergence we need a new operator.

Definition(s) 5.1.

The vector di↵erential operator r (pronounced “del ”) is defined as:

r =
D

@

@x

,

@

@y

,

@

@z

E

Definition(s) 5.2.

The curl of F is the vector field on R3 defined by:

curl F = r⇥ F

=

i j k

@

@x

@

@y

@

@z

P Q R

= (R
y

�Q

z

)i� (R
x

� P

z

)j+ (Q
x

� P

y

)k

= hR
y

�Q

z

, P

z

�R

x

, Q

x

� P

y

i

Note: Does third component look familiar? It 2 dimensional “circulation at a point ” that we

integrated in Green’s Theorem . Also if Q
x

� P

y

= 0 () Q

x

= P

y

which

is the major condition in the component test .

Theorem 5.3.

If F is a vector field defined on all of R3 whose component functions have continuous partial derivatives and

curl F = 0 , then F is conservative .

1
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Example 5.4.

Consider the vector field F(x, y, z) = y

2
z

3
i+ 2xyz3j+ 3xy2z2k.

(a) Show that F is a conservative vector field.

(b) Find a function f such that F = rf .

2
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Definition(s) 5.5.

The divergence of F is scalar function defined by:

div F = r · F

=
D

@

@x

,

@

@y

,

@

@z

E
· hP,Q,Ri

= P

x

+Q

y

+R

z

Example 5.6.

If F = hxz, xyz,�y

2i find div F.

Great but why is this useful?

Theorem 5.7.

If F = hP,Q,Ri and P , Q, and R have continuous second-order partial derivatives, then

div(curl F) = 0

Note: Proof of this is in the book on page 1119. It is very boring and not at all enlightening. It works because of

Clairaut’s Theorem.

Example 5.8.

Your friend Eugene comes up to you and is like “Whoa you have to check out my awesome vector field F. You know what? I

bet you can’t even figure out what it is. The only thing I’ll tell you is that curl F = hxz, xyz,�y

2i.” Shut Eugene up by

finding his vector field if it exists or prove that Eugene is a liar.

3
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Definition(s) 5.9.

1. Curl helps to measure rotations about a point. Because of this if curl F= 0 at a point P then the fluid is ree from

rotations at P and F is called irrotational at P .

2. Div (Divergence) represents the net rate of change (with respect to time) of a mass of fluid (or gas) flowing from

the point (x, y, z). If div F= 0 then there is no net change and F is said to be imcompressible .

Alternate Forms of Green’s Theorem

Two ideas here that will be used later. Both have to do with downgrading curl and divergence to 2 dimensions for a minute.

That is take F = hP,Q, 0i

Theorem 5.10 (Green’s Thoerem).

Bunch of conditions up here.

I

C

F ·T ds =

ZZ

D

✓
@Q

@x

� @P

@y

◆
dA

=

ZZ

D

curl F · k dA

And while this may be annoying to write right now, it is the first good step in expanding Green’s Theorem to 3 dimensions

and discovering Stokes’ Theorem (16.8).

The second idea is instead of choosing to do the line integrals

I

C

F ·T ds instead evaluating

I

C

F · n ds where n is a

outward pointing unit normal vector to C.

Theorem 5.11.

An outward pointing unit normal vector to a curve C parametrized counterclockwise by r(t) = hx(t), y(t)i is given by:

n(t) =
1

|r0(t)| hy
0(t),�x

0(t)i

4
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Theorem 5.12 (Green’s Thoerem Alternate).

Bunch of conditions up here.

I

C

F · n ds =

ZZ

D

✓
@P

@x

+
@Q

@y

◆
dA

=

ZZ

D

div F dA

A proof of this can be found on page 1120. This will help us expand into 3 dimensions for Divergence Theorem (16.9).

Example 5.13.

Let F=�2xi� 3yj+ 5zk. Is F irrotational/incompressible/both/neither?

5
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Group Work

1. Consider the vector field F(x, y) = h2 cosx, sin(xy)i shown below.

(a) Find formulas for divergence and curl of F.

(b) Show that the divergence is 0 everywhere along the y�axis. How is this apparent in the graph?

(c) Find the curl at
⇣
⇡

3
, 1
⌘
and

✓
2⇡

3
, 1

◆
. Relate the sign di↵erence in your answer to the direction of the curl.

6
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6 Surface Area

Just as arc length is an application of a single integral, surface area is an application of double integrals.

• In 15.6 we compute surface area for explicit surfaces z = f(x, y) . In chapter 16 we compute surface area of

parametrized surfaces.

Theorem 6.1.

The area of the surface with equation z = f(x, y) with (x, y) 2 D, where f

x

and f

y

are continuous, is:

A(S) =

ZZ

D

q
[f

x

]2 + [f
y

]2 + 1 dA

Example 6.2.

Find the surface area of the part of the surface z = x

2 + 2y that lies above the triangular region T in the xy- plane with

vertices (0, 0), (1, 0), and (1, 1).
R 1
0

R
x

0

p
4x2 + 5 dy dx

1

12
(27� 5

p
5)

Example 6.3.

Find the area of the part of the paraboloid z = x

2 + y

2 that lies under the plane z = 9.
RR p

1 + 4r2 r dr d✓

⇡

6
(37

p
37� 1)

1
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6 Parametric Surfaces and Their Areas

Take time to read this and watch the videos before coming to class.

Recall that curves in space are 1 dimensional so we need 1 dimensional =) 3 dimensional so they look like
r(t) = hx(t), y(t), z(t)i

Recall that surfaces in space are 2 dimensional so we need 2 dimensional =) 3 dimensional so they look like
r(s, t) = hx(s, t), y(s, t), z(s, t)i

In the book they have a habit of instead writing:

r(u, v) = hf(u, v), g(u, v), h(u, v)i = f(u, v)i+ g(u, v)j+ h(u, v)k

To get a better idea of the visualization and mathematics behind surface parametrization please take advantage of the
following videos (they are hyper links so just click on them on your computer). The videos take about 35min to go through
but you will have a much better understanding of this subject. I highly recommend it.

Video 1:
https://www.khanacademy.org/math/calculus/multivariable-calculus/surface_parametrization/v/introduction-to-parametrizing-a-surface-with-two-parameters

Video 2:
https://www.khanacademy.org/math/calculus/multivariable-calculus/surface_parametrization/v/determining-a-position-vector-valued-function-for-a-parametrization-of-two-parameters

Example 6.1.

Give a parametrization r(s, t) of the plane x + y + z = 2 over the

square x 2 [�1, 1] and y 2 [�1, 1]. (Picture to right)

x

y

z

x+ y + z = 2

(�1,�1, 0) (�1, 1, 0)

(1, 1, 0)(1,�1, 0)

1
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Example 6.2.

Find a parametrization r(s, t) = hx(s, t), y(s, t), z(s, t)i of the following: z = 3
p
x

2 + y

2
z 2 [0, 3]

(Left) x(s, t) = s cos t and y(s, t) = s sin t then z(s, t) = 3s where s 2 [0, 1] and t 2 [0, 2⇡]

Example 6.3.

Find a parametrization r(s, t) = hx(s, t), y(s, t), z(s, t)i of the following: x2 + y

2 + z

2 = 9

(Right) x(s, t) = 3 cos t sin s and y(s, t) = 3 sin t sin s then z(s, t) = 3 cos s where s 2 [0,⇡] and t 2 [0, 2⇡]

Remark 6.4.

If you are doing things right then often your limits for your independent variables s, t (or u, v) should not depend

on one another.

2
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Example 6.5.

Parametrize the portion of the tilted plane x� y + 3z = 5 that lies inside of the cylinder x2 + y

2 = 4.

consider x(s, t) = s cos t and y(s, t) = s sin t with s 2 [0, 2] and t 2 [0, 2⇡] this will give us the ability to move around inside

the cylinder. Now we only need to get the height of the plane right. So we consider

x� y + 3z = 5

(s cos t)� (s sin t) + 3z = 5

3z = 5 + s sin t� s cos t

z(s, t) =
5 + s sin t� s cos t

3

Remark 6.6.

Compare this problem to 6.1. These two problems together should teach us that it isn’t just about the surface, it’s also the

area we the surface is over.

Definition(s) 6.7.

A parametrized surface r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k is smooth if r
s

and r

t

are continuous and

r

s

⇥ r

t

is never zero on the interior of the parameter domain.

Note: our parametrization of the cone is smooth.

Now our goal is to find and area equation for smooth parametrized surfaces. The idea is as follows

3
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z = f(x, y) =
5xy

e

x

2+y

2

If we chop our surface into lots of small rectangles

that have side lengths 4s and 4t (where

s, t parametrize the surface) then the area of

the small surface piece is about the area of the

parallelogram made by the vectors 4sr

s

and 4tr

t

Then we can sum all these areas together to get
the summation:

X

n

area of the parallelograms

X

n

|4s r

s

⇥4t r

t

|

X

n

|r
s

⇥ r

t

|4t 4s

Since |r
s

⇥ r

t

| is continuous we know that

Surface Area =
X

n

|r
s

⇥ r

t

|4t 4s =

ZZ

R

|r
s

⇥ r

t

| ds dt

Theorem 6.8.

The area of a smooth surface r(s, t) = hx(s, t), y(s, t), z(s, t)i with s 2 [a, b] and t 2 [c, d] is:

Area =

Z
d

c

Z
b

a

|r
s

⇥ r

t

| ds dt

Or the book writes:

Theorem 6.9.

The area of a smooth surface r(u, v) = f(u, v)i+ g(u, v)j+ h(u, v)k with a  u  b and c  v  d is:

Area =

Z
d

c

Z
b

a

|r
u

⇥ r

v

| du dv

Remark 6.10. Note we can use this theorem along with the parametrization r(x, y) = hx, y, f(x, y)i to prove the 15.6

formula for surface area.

4
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There is still much to cover so lets talk about the following worked out example:

Example 6.11.

Find the area of the portion of the tilted plane x� y + 3z = 5 that lies inside of the cylinder x2 + y

2 = 4.

Solution. From Example 5.2 we have that the tilted plane is parametrized by r(s, t) = hs cos t, s sin t, 5 + s sin t� s cos t

3
i

where s 2 [0, 2] and t 2 [0, 2⇡]

So we first need to calculate out:

r

s

= hcos t, sin t, sin t� cos t

3
i

r

t

= h�s sin t, s cos t,
s cos t+ s sin t

3
i

Now we can calculate |r
s

⇥ r

t

|

|r
s

⇥ r

t

| =

�����������

i j k

cos t sin t
sin t� cos t

3

�s sin t s cos t
s cos t+ s sin t

3

�����������

=

����(sin t
s cos t+ s sin t

3
� s cos t

sin t� cos t

3
)i� (cos t

s cos t+ s sin t

3
+ s sin t

sin t� cos t

3
)j+ (s cos2 t+ s sin2 t)k

����

=

����(
s sin cos t+ s sin2 t

3
+

�s sin t cos t+ s cos2 t

3
)i� (

s cos2 t+ s sin t cos t

3
+

s sin2 t� s sin t cos t

3
)j+ (s)k

����

=

����(
s sin2 t

3
+

s cos2 t

3
)i� (

s cos2 t

3
+

s sin2 t

3
)j+ (s)k

����

=
���(
s

3
)i� (

s

3
)j+ (s)k

���

=
q�

s

3

�2
+
��s

3

�2
+ s

2

=
q

s

2

9 + s

2

9 + 9s2

9 =
q

11s2

9 =
s

3

p
11

5
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Integrating finally we get: Z 2⇡

0

Z 2

0
|r

s

⇥ r

t

| ds dt =

Z 2⇡

0

Z 2

0

s

3

p
11 ds dt

=

Z 2⇡

0
1 dt

� Z 2

0

s

3

p
11 ds

�

= [2⇡]


s

2

6

p
11

�2

0

= 2⇡
4

6

p
11

=
4⇡

3

p
11

Intuitively a slanted circle like this should have more area than a non-slanted circle in the cylinder so we could check:

⇡(22) = 4⇡ <

4⇡

3

p
11

Since
p
11 > 3. So our answer seems reasonable!

Remember: unless the problem specifies you can use 15.6 to help your evaluation.

Example 6.12.

Find the area of the portion of the tilted plane z =
5� x+ y

3
(Look familiar?. . .x� y + 3z = 5) that lies inside of the

cylinder x2 + y

2 = 4

Solution.

z =
5� x+ y

3

f(x, y) =
5� x+ y

3

f

x

(x, y) =
�1

3

f

y

(x, y) =
1

3

Area =

ZZ

R

q
f

2
x

+ f

2
y

+ 1dy dx

=

ZZ

R

r
1

9
+

1

9
+ 1dy dx

=

ZZ

R

r
11

9
dy dx

=

p
11

3

ZZ

R

dy dx

=

p
11

3
(⇡22) =

4⇡
p
11

3
;

6
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Group Work

1. Find the area of the part of the cylinder y2 + z

2 = 9 that lies above the rectangle with vertices (0, 0), (4, 0), (0, 2), and

(4, 2).

2. Express that area of the surface z = e

�x

2�y

2

that lies above the disk x

2 + y

2  4 in terms of a single integral. Do not

evaluate.

7
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3. Give a parametrization r(s, t) of the surface z = xy

2 over the triangle with vertices (0, 0), (1, 0), and (1, 1) in the

xy�plane.

4. Use this parametrization to express the surface area as a double integral. Simplify as much as possible without

evaluating the integrals.

8
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7 Surface Integrals

Class Learning Goals

1. Calculate surface integrals of scalar functions

(a) Given an explicit surface, z = g(x, y).

(b) Given a parametric surface, r(s, t).

2. Gain an intuitive understanding of an oriented surface with orientation given by the unit normal vector and the
concept of positive orientation.

In 16.2 we upgraded from finding arc length,

Z

C

1 ds to finding line integrals of scalar functions

Z

C

f(x, y, z)ds where that

ds =

s✓
dx

dt

◆2

+

✓
dy

dt

◆2

+ 1 . We will now upgrade from surface area to surface integrals.

Definition(s) 7.1.

1. If a surface S is given explicitly as z = g(x, y) then define dS =

s✓
@g

@x

◆2

+

✓
@g

@y

◆2

+ 1 dy dx

2. If a surface S is given parametrically as r(s, t) then define dS = |r
s

⇥ r

t

| ds dt

Bonus Exercise: Show that explicit surfaces can be parametrized x = s, y = t, and z = g(s, t). When done so then

|r
s

⇥ r

t

| =

s✓
@g

@x

◆2

+

✓
@g

@y

◆2

+ 1.

Remark 7.2.

With this definition surface area of a surface S can be expressed as

ZZ

S

1 dS .

1
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Definition(s) 7.3.

The surface integral of f over the surface S is given by

ZZ

S

f(x, y, z) dS

which can be expressed

1. Explicitly:
ZZ

S

f(x, y, z) dS =

ZZ

S

f(x, y, g(x, y))

s✓
@g

@x

◆2

+

✓
@g

@y

◆2

+ 1 dy dx

2. Parametrically: ZZ

S

f(x, y, z) dS =

ZZ

S

f(r(s, t))|r
s

⇥ r

t

| ds dt

Example 7.4 (FS14 Exam 4 Question).

Consider the entire plane 2x+ y + z = 4 which I have loaded with snakes according to the snake density function

N(x, y, z) =
50

⇡

p
6
e

�x

2�y

2 snakes

m

2
. How many snakes are on the plane?

2
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Example 7.5. Compute the surface integral

ZZ

S

z

2
dS, where S is the unit sphere x

2 + y

2 + z

2 = 1.

(a) by expressing the surface parametrically.

r(s, t) = h1 cos t sin s, 1 sin t sin s, 1 cos si

r

s

= hcos t cos s, sin t cos s,� sin si

r

t

= h� sin t sin s, 1 cos t sin s, 0i

r

s

⇥ r

t

= (0 + cos t sin2 s)i� (0� sin t sin2 s)j+ (cos2 t cos s sin s+ sin2 t sin s cos s)k

= hcos t sin2 s, sin t sin2 s, cos s sin si

|r
s

⇥ r

t

| =
q
(cos t sin2 s)2 + (sin t sin2 s)2 + (cos s sin s)2

=
p

cos2 t sin4 s+ sin2 t sin4 s+ cos2 s sin2 s

=
p

sin4 s+ cos2 s sin2 s

=
p

sin2 s = sin s
ZZ

S

z

2
dS =

Z 2⇡

0

Z
⇡

0
cos2 s sin s ds dt

= 2⇡


�cos3 s

3

�
⇡

0

= 2⇡


��1

3
+

1

3

�
=

4⇡

3

3
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(b) by carefully ripping the surface into two surfaces that can be expresses explicitly.

Consider S1 : g1(x, y) =
p
1� x

2 � y

2 and S2 : g2(x, y) = �
p
1� x

2 � y

2 then we have:

q
((g1)x)

2 + ((g1)y)
2 + 1 =

vuut
 

�xp
1� x

2 � y

2

!2

+

 
�yp

1� x

2 � y

2

!2

+ 1

=

s
x

2

1� x

2 � y

2
+

y

2

1� x

2 � y

2
+ 1

=

r
1

1� x

2 � y

2
=

1p
1� x

2 � y

2

Note that this will be the same value as
q
((g2)x)

2 + ((g2)y)
2 + 1 because of all the (?)2. So we have:

ZZ

S

z

2
dS =

ZZ

S1

z

2
dS1 +

ZZ

S2

z

2
dS2

=

ZZ

D

(1� x

2 � y

2)
1p

1� x

2 � y

2
dA+

ZZ

D

(1� x

2 � y

2)
1p

1� x

2 � y

2
dA

= 2

ZZ

D

p
1� x

2 � y

2
dA

= 2

Z 2⇡

0

Z 1

0
r

p
1� r

2
dr d✓

= 4⇡


�(1� r

2)3/2

3

�1

0

= 4⇡


0

3
+

1

3

�
=

4⇡

3

4
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We are moving into defining surface integrals of vector fields (just as in 16.2 after line integrals of scalar functions we moved

into line integrals of vector fields). To do this correctly we need a sense of orientation.

The book goes into a very formal definition for orientation. However non orientable surfaces are quite rare (extinct in this

class). We will just settle with an intuitive definition

Definition(s) 7.6 (ish).

1. A surface S is called an oriented surface if it has two sides .

EX: Planes, Spheres, All Quadric Surfaces.

EX: Non oriented surfaces: Mobius strip, Klein Bottle.

2. An orientation is just a choosing of one of the two sides. Some common orientations include:

(a) Outward (for closed surfaces [see below])

(b) Upward has a positive z-component.

3. In this class choosing an orientation comes down to selecting the correct normal vector .

One of our remain big theorems, the divergence theorem, will depend on closed surfaces so we will give it a few extra

definitions.

Definition(s) 7.7.

1. A surface is called closed if it is the boundary of a solid region .

2. Outward orientation is also referred to as positive orientation .

Insert Ryan rant about why orientation is necessary for the upcoming material.

5
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Group Work

1. Evaluate

ZZ

S

y dS, where S is the surface z = x+ y

2
, x 2 [0, 1], y 2 [0, 2].

Ans=13
p
2/3

6
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2. Evaluate:

ZZ

S

(x2 + y

2 + z

2) dS

where is is the part of the cylinder x2 + y

2 = 4 between the planes z = 0 and z = 1, together with its top and bottom

disks.

7
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7 Surface Integrals

Class Learning Goals

1. Calculate surface integrals of vector fields.

(a) Given an explicit surface, z = g(x, y).

(b) Given a parametric surface, r(s, t).

2. Recognize the physical interpretation of the above calculations.

Now we are ready to transition into surface integrals of vector fields.

Definition(s) 7.8.

If F is a continuous vector field defined on an oriented surface S with unit normal vector n, then the

surface integral of F over S is

ZZ

S
F · dS =

ZZ

S
F · n dS

This integral is also called the flux of F across S.

To help evaluate these we need to determine a more concrete formula for n.

1. If the surface is defined parametrically by r(s, t), then

ZZ

S
F · n dS =

ZZ

S
F · ± rs ⇥ rt

|rs ⇥ rt|
dS

=

ZZ

D
F · ±(rs ⇥ rt) dA

2. If the surface is defined explicitly by z = g(x, y), then

ZZ

S
F · n dS =

ZZ

D
F · ±

D
@g

@x

,

@g

@y

,�1
E
dA

2 Notes: The n in the explicit equation should look familiar from 14.4 (Tangent Planes). All these ± signs are determined

by the surface’s orientation .

1
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Example 7.9.

Find the (outward) flux of vector field F = hz, y, xi across the sphere parametrized by r(s, t) = hsin s cos t, sin s sin t, cos si with

s 2 [0,⇡], t 2 [0, 2⇡]. Hints: Recall rs ⇥ rt = hsin2 s cos t, sin2 s sin t, sin s cos si,
R ⇡
0 sin3 u du = 4/3, and

R 2⇡
0 sin2 u du = ⇡.

check that you have outward by (s, t) = (⇡/2, 0) =) r(⇡/2, 0) = h1, 0, 0i and our normal vector rs ⇥ rt = h1, 0, 0i so this is

indeed pointing outward.Z 2⇡

0

Z ⇡

0
(2 sin2 s cos s cos t+ sin3 s sin2 t) ds dt

2
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Remark 7.10.

Unless otherwise specified assume that your closed surfaces are always positively oriented .

Example 7.11.

Evaluate

ZZ

S
F · dS, where F = yi+ xj+ zk and S is the boundary of the solid region E enclosed by the paraboloid

z = 1� x

2 � y

2 and the plane z = 0

S1 = plane, S2 = paraboloid.

n1 = h0, 0,�1i

n2 = �h�2x,�2y,�1iZZ

S1

F · dS = 0
ZZ

S2

F · dS = ⇡/2

Remark 7.12. In the flux definition:

ZZ

S
F · dS =

ZZ

S
F · n dS

We can interpret this calculation as summing up movement of particles induced by the vector field

across the surface S (Hence the F · n ).

3
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Group Work

1. Find the upward flux of F = hx, y, zi across the portion of the plane x+ y + z = 1 inside the cylinder x2 + y

2 = 1.

4
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2. Evaluate the surface integral:

ZZ

S
hy3, 4x, z2i · dS

where S is given by cylinder z2 + y

2 = 1 above the xy-plane with positive orientation and 0  x  2.

5
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8 Stokes’ Theorem

Class Learning Goals

1. Understand the upgrade from Green’s Theorem to Stokes’ Theorem including the statement of Stokes’ Theorem.

2. Practice turning surface integrals into line integrals

3. Practice turning line integrals into surface integrals

As we saw in 16.5 Green’s Theorem can be expressed as

Green’s Theorem C is a closed curve that bounds D in the xy plane.... blah blah other conditions.

Z

C
F · dr =

ZZ

D
(curl F) · k dA

We can easily upgrade C to a curve in space bounding a surface S. r can parametrize C and F can be a vector field in three

dimensions. The question becomes how do we upgrade k ? What was special about it in Green’s Theorem?

Theorem 8.1 (Stokes’ Theorem).

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C

with positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region

in R3 that contains S. Then

Z

C
F · dr =

ZZ

S
(curl F) · n dS

Remark 8.2.

It is important that n is an upward pointing unit normal vector and C is

positively oriented when viewed from above. The can be generalized using the

right-hand rule . As your fingers go around the curve your thumb will point in the direction of

the unit normal vector .

Remark 8.3.

Unlike some theorems, Stokes’ equal sign is really a two way street.

1
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Example 8.4.

Use Stokes’ Theorem to compute the integral

ZZ

S
curl F · dS, where F = hxz, yz, xyi and S is the part of the sphere

x

2 + y

2 + z

2 = 4 that lies inside the cylinder x2 + y

2 = 1 and above the xy�plane.

Remark 8.5.

This real di�culty in these problems identifying the boundary curve of the surface and making sure your parametrization

orients the curve correctly.

2
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Example 8.6.

Evaluate

Z

C
F · dr, where F(x, y, z) = �y

2
i+ xj+ z

2
k and C is the curve of intersection of the plane y + z = 2 and the

cylinder x2 + y

2 = 1. (Note: C is to be oriented counterclockwise when viewed from above.)

Remark 8.7.

If we wanted to evaluate the line integral in Ex 8.6 we would end up integrating:Z 2⇡

0
(sin3 t+ cos2 t� 4 cos t+ 4 sin t cos t� sin2 t cos t)dt.

Remark 8.8.

The surface in Ex 8.6 is not unique. However it is clearly the correct choice.

3
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Group Work

Let S be the surface formed by capping the piece of the cylinder x2 + y

2 = 2, 0  z  4 with the top half of the sphere

x

2 + y

2 + (z � 4)2 = 2.

1. Draw a rough sketch of S.

2. What is C = @S? Parametrize C so that it has a positive orientation with respect to the outward normal.

3. Evaluate

ZZ

S
curl F · dS, where F = hzx+ z

2
y + x, z

3
yx+ y, z

4
x

2i.

4
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8 Stokes’ Theorem

Class Learning Goals

1. Tolerate the idea of the proof of Stokes’ Thoerem.

2. Cement your knowledge of how to use Stokes’ Thoerem.

Recall the statement of Stokes’ Theorem

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth

boundary curve C with positive orientation. Let F be a vector field whose components have continuous partial derivatives

on an open region in R3 that contains S. Then

Z

C

F · dr =

ZZ

S

(curl F) · n dS

Today we will start by trying to gain an intuitive idea of what Stokes’ Theorem is trying to convey.

Remark 8.9 (Idea of a Proof of Stokes’ Theorem).

First we must verify that curl F has something to do with circulation.

Originally we considered circulation around a point when things rotated in the xy-plane perpendicular to k.

Now there could be circulation in the xz-plane perpendicular to j and circulation in the yz-plane perpendicular to i. We want
to consider all three types of circulation. To help us we will create a vector to try to capture all these pieces of information.

(Circulation in the yz-plane)i+ (Circulation in the xz-plane)j+ (Circulation in the xy-plane)k

Picture:

1
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We already know from before that:
(Circulation in the xy-plane) = Q

x

� P

y

Spending a long time drawing pictures of rectangles like these:

>

F · (�i)

>

F
·
(j)

>

F · (i)

>

F
·(
�
j)

(x + 4x, y + 4y)

(x + 4x, y)(x, y)

(x, y + 4y) We can get the circulation in the other two planes. Mainly:

(Circlulation in the xz-plane) = P

z

�R

x

(Circlulation in the yz-plane) = R

y

�Q

z

And we can see there is some beautiful symmetry happening here.

So we get our mega vector that considers the circulation in all three coordinate planes:

Mega Circulation Vector = hR
y

�Q

z

, P

z

�R

x

, Q

x

� P

y

i

But Mega Circulation Vector isn’t very o�cial and won’t make it into any math books so instead we recognize it as curl F.

It helps us measure the rate of rotation that is occurring at every point in the vector field.

To finish up we need to remember that Circulation (even at a point) needs to be a number

(Recall 0 circulation means no rotation, + circulation is counterclockwise, - is clockwise) So we need to turn this Mega
Circulation Vector into a number. . .
In addition since our ”water, beads, particles, etc” are trapped on a surface we really don’t care about certain directions.

So it makes a certain amount of sense to have:

Circulation at a point = curl F · n

where n is a unit normal vector to the surface’s tangent plane at that point.

And this is how we finally see that curl F · n = Circulation at a pt.
Now we can use a similar argument to Green’s Thoerem to get

X
(Circulation around boundary of S) =

X
(Circulation around each point in S)

Z

C

F · dr =

ZZ

S

curl F · ndS

2
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Example 8.10.

Evaluate

ZZ

S

(r⇥F) · dS where F = xyzi+ xyj+ x

2
yzk where S consists of the top and the four sides (but not the bottom)

of the cube with vertices (±1,±1,±1).
Note: WW # 3 has you do this by applying Stokes’ Theorem once. Here we will be extra clever and apply it twice!

3
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Example 8.11.

12. (14 pts) on SS01 Final Exam.

Use Stokes’ Theorem to evaluate

ZZ

S

r⇥ (yi) · dS where S is the hemisphere: x2 + y

2 + z

2 = 1, z � 0.

The boundary curve C is parametrized by r(t) = hcos t, sin t, 0i, t 2 [0, 2⇡] and F = hy, 0, 0i. Therefore...
ZZ

S

r⇥ (yi) · n d� =

I

C

F · dr

=

Z 2⇡

0
hy, 0, 0i · h� sin t, cos t, 0i dt

=

Z 2⇡

0
� sin2 t dt

=

Z 2⇡

0
�
✓
1� cos(2t)

2

◆
dt

= �

t� sin(2t)/2

2

�2⇡

0

= �2⇡

2
= �⇡

4
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Group Work

1. (15pts on E4 - FS14) Use Stokes’ Theorem to evaluate

ZZ

S

curl F · dS where

F(x, y, z) = xyzi+ 2xyj+ x

2
yzk and S consists of the cylinder

y

2 + z

2 = 1, x 2 [�1, 1] along with the disk y

2 + z

2  1, x = �1, oriented
outward, shown to the right.

x

y

z

(a) Identify and parametrize the boundary curve of S with the correct orientation.

The boundary curve is x = 1 and y

2 + z

2 = 1 which can be parametrized by
r(t) = h1, cos t,� sin ti, t 2 [0, 2⇡] or

r(t) = h1, sin t, cos ti, t 2 [0, 2⇡]

(any parametrization works so long as it goes clockwise when viewed from the positive x axis).

(b) Write

ZZ

S

curl F · dS as an equivalent line integral and then evaluate.

By Stokes’ Theorem
ZZ

S

curl F · dS =

Z

C

F · dr

=

Z 2⇡

0
hxyz, 2xy, x2

yzi · h0, cos t,� sin ti dt

=

Z 2⇡

0
hsin t cos t, 2 sin t, sin t cos ti · h0, cos t,� sin ti dt

=

Z 2⇡

0
(2 sin t cos t� sin2 t cos t) dt

=


sin2 t� sin3 t

3

�2⇡

0

= 0

5
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9 The Divergence Theorem

Class Learning Goals

1. Understand the statement of the Divergence Theorem and when it can be applied.

2. Apply the Divergence Theorem to problems

Let’s quickly upgrade the alternate version of Green’s Theorem so we can start doing some problems.

Recall from 16.5

Green’s Theorem Alternate Bunch of conditions up here.

I

C

F · n ds =

ZZ

D

✓
@P

@x

+
@Q

@y

◆
dA

=

ZZ

D

div F dA

This can be naturally upgraded to

Theorem 9.1 (The Divergence Theorem).

Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F

be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

ZZ

S

F · n dS =

ZZZ

E

div F dV

The main condition here is that S needs to be closed .

1
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Example 9.2.

Evaluate

ZZ

S

F · dS where F = hxy, y2 + e

xz

2

, sin(xy)i and S is the surface of the

region E bounded by the parabolic cylinder z = 1�x

2 and the planes z = 0, y = 0,

and y + z = 2.

integrate y �! z  ! x

Final answer is kind of messy but you get
184

35

Mention this is WAY better than integrating the surface integral itself... 4 surfaces!

2
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Example 9.3 (FS 01 Final Exam).

12. (16 pts) E is a solid region in the first octant that lies beneath the plane 2x+ 3y + 2z = 6. Let S be the boundary of E

(S consists of 4 triangles). If F = x

2i+ y

2j+ z

2k use the Divergence Theorem to write

ZZ

S

F · dS as a triple integral.

Do not evaluate the integral.

Example 9.4 (SS14 Exam 4 Question).

(18 points) Consider the surfaces S from Exam 3 shown below:

x =
p
3 y = 3

y = x z = 4� x

z = 0

Calculate the flux of F = (3x + tan y)i + (y � ln(z + 1))j + (3xy � 2z)k outward

through S. (Hint: the volume enclosed by S is 24� 13
p
3)

x

y

z

3
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Group Work

Consider F =
D
xy

2

2
,

y

3

6
, zx

2
E
over the surface S, where S is the cylinder x2 + y

2 = 1 capped by the planes z = ±1.

1. Is the net flux of F from the surface positive or negative?

Positive

2. What is the value of the flux across S?

Ans= ⇡

4
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Challenging problem

3. Evaluate

ZZ

S=@R

(x+ y

2 + 2z) dS, where R is the solid sphere x

2 + y

2 + z

2  4 using the divergence theorem.

F = h2, 2y, 4zi

Ans=
32

3
⇡

5
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9 The Divergence Theorem

Class Learning Goals

1. Pay our respects by going through a proof of the Divergence Theorem

2. Try a few more Divergence Theorem Problems

The Divergence Theorem

Let E be a solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F be a

vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

ZZ

S

F · n dS =

ZZZ

E

div F dV

Idea of Proof Here I will give a more rigorous proof then I do normally. Those pursuing a degree in Mathematics should

pay extra attention to this proof technique as it is a common technique used again and again, that is:

1. Proof in a special case

2. How to expand the special case to a general region

3. How to expand the special case to a general vector field

Proof in special case: F = h0, 0, Ri and E is vertically simple .

E is called vertically simple if:

1. E is bounded on top by z = z2(x, y) and on bottom by z = z1(x, y) where x

and y for these surfaces are over the same planar region D.

2. E includes all line segments from z1(x0, y0) to z2(x0, y0) where

x0, y0 are in D.

mini picture here to the right
Now let’s expand the right hand side of the divergence theorem

ZZZ

E

div F dV =

ZZZ

E

R

z

(x, y, z) dV

=

Z Z Z
z2(x,y)

z1(x,y)
R

z

(x, y, z) dz dy dx

=

ZZ

D

[R(x, y, z2(x, y))�R(x, y, z1(x, y))] dy dx

1
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Now we evaluate the left side to hopefully get the same thing:

ZZ

S

F · n dS =

ZZ

bottom

F · n dS +

ZZ

sides

F · n dS +

ZZ

top

F · n dS

=

ZZ

bottom

h0, 0, Ri ·
D
@z1

@x

,

@z1

@x

,�1
E
dy dx

+

ZZ

sides

h0, 0, Ri ·
D
XXX,XXX, 0

E
dy dx

+

ZZ

top

h0, 0, Ri ·
D
� @z2

@x

,�@z2

@x

, 1
E
dy dx

=

ZZ

bottom

�R(x, y, z) dy dx+

ZZ

sides

0 dy dx+

ZZ

top

R(x, y, z) dy dx

=

ZZ

D

�R(x, y, z1(x, y)) dy dx+

ZZ

D

R(x, y, z2(x, y)) dy dx

=

ZZ

D

[R(x, y, z2(x, y))�R(x, y, z1(x, y))] dy dx

How to expand the special case to a general region
Any region can be decomposed into into the sum of vertically simple regions.

Compute the surface integrals and triple integrals over each one.

How to expand the special case to a general vector field

ZZ

S

F · n dS =

ZZZ

E

div F dV

ZZ

S

hP,Q,Ri · hn1, n2, n2i dS =

ZZZ

E

(P
x

+Q

y

+R

z

) dV

ZZ

S

Pn1 +Qn2 +Rn3 dS =

ZZZ

E

(P
x

+Q

y

+R

z

) dV

ZZ

S

Pn1 dS +

ZZ

S

Qn2 dS +

ZZ

S

Rn3 dS =

ZZZ

E

P

x

dV +

ZZZ

E

Q

y

dV +

ZZZ

E

R

z

dV

2
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We have already shown that

ZZ

S

Rn3 dS =

ZZZ

E

R

z

dV . Similar proofs can be used to show

ZZ

S

Pn1 dS =

ZZZ

E

P

x

dV and

ZZ

S

Qn2 dS =

ZZZ

E

Q

y

dV .

Example 9.5.

Evaluate the surface integral

ZZ

S

hxz,�2y, 3xi · dS where S is the sphere x

2 + y

2 + z

2 = 4 with outward orientation.

Example 9.6.

Find

ZZ

S

F · dS where F(x, y, z) = xi+ yj+ zk and S is the outwardly oriented surface shown in the figure below.

3
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Example 9.7.

Prove that

ZZ

S

curl F · dS = 0 assuming S and E satisfy the conditions of the Divergence Theorem and the scalar functions

and components of the vector fields have continuous second-order partial derivatives.

Example 9.8.

Use the Divergence Theorem to evaluate

ZZ

S

(2x+ 2y + z

2) dS where S is the sphere x

2 + y

2 + z

2 = 1.

4
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Group Work

1. Compute

ZZ

S=@R

F · dS where F = (x� z)i+ (y � x)j+ (z � y)k

and S is the cylinder x2 + y

2 = 1 capped by the planes 2z = 1� x and 2z = x� 1.

5


