The Spectral Mapping Theorem. Let A be an operator on an n-dimensional real or complex vector space V and let $q(x)$ be any polynomial. Then the spectrum of the polynomial operator $q(A)$ is the image of the spectrum of A under q, i.e.,

$$sp(q(A)) = q(sp(A)).$$

As an epigram, *where goes the operator, so goes its spectrum.*

Moreover, multiplicities are preserved—the multiplicity of the eigenvalue μ of $q(A)$ is the sum of the multiplicities of the eigenvalues λ of A mapped by q to μ.

Proof. Since under any change of basis P,

$$P^{-1}q(AP) = q(P^{-1}AP),$$

we may as well assume that A is already in Jordan canonical form. But then $q(A)$ consists of diagonal blocks of lower-triangular matrices with diagonal elements $q(\lambda)$, where λ are the eigenvalues of A. But the eigenvalues of $q(A)$ are these diagonal entries $q(\lambda)$. Note that multiplicities are completely determined: $\mu = q(\lambda)$ will occur along the diagonal of $q(A)$ the exact number of times that λ’s with $q(\lambda) = \mu$ occur along the diagonal of A.

Remark A. The spectral mapping theorem holds for any finite dimensional vector space V over any field K since we may embed K into the splitting field Σ of the characteristic polynomial of A, lift V to a vector space with scalars in Σ, so that the Jordan canonical form obtains.

Remark B. These polynomial mappings, however, may destroy invariant subspace structure. For example, a (cyclic) 4×4 operator A with minimal polynomial $m(x) = \phi(x) = x^4$, when squared $q(A) = A^2$, has invariant subspace structure x^2, x^2, as can be seen by squaring the Jordan canonical form for A and calculating elementary divisors.