Principal Moments of Inertia

The moment of inertia $I_{\mathbf{u}}$ of a solid body V rotating about an axis through the origin in the direction given by the unit vector \mathbf{u} (counter clockwise when viewed point-on) is the scalar

$$
\begin{equation*}
I_{\mathbf{u}}=\int_{V} r^{2} d m=\int_{V}(\mathbf{x} \times \mathbf{u})^{2} d m=\int_{V}(\mathbf{x} \times \mathbf{u})^{2} \rho d \mathbf{x} \tag{1}
\end{equation*}
$$

where $\rho=\rho(\mathbf{x})$ is mass density. The rotational kinetic energy of this body is then

$$
\begin{equation*}
T=\frac{\omega^{2} I_{\mathbf{u}}}{2} \tag{2}
\end{equation*}
$$

where ω is the angular velocity of rotation.
By carrying out the integrations in (1) this moment of inertia is realized by a quadratic form:

$$
\begin{equation*}
I_{\mathbf{u}}=\mathbf{u}^{T} A \mathbf{u} \tag{3}
\end{equation*}
$$

where $A^{T}=A$. By the spectral theorem we may perform a distance-preserving change of coordinates $P=\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right), P^{T} P=I$, so that the form (3) giving the moment of inertia (1) is now diagonal:

$$
I_{\mathbf{u}^{\prime}}=\mathbf{u}^{\mathbf{u}^{T}}\left(\begin{array}{rrr}
I_{1} & 0 & 0 \tag{4}\\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right) \mathbf{u}^{\prime}
$$

with $I_{1} \geq I_{2} \geq I_{3}>0$. The eigenvalues I_{1}, I_{2}, I_{3} are called the principal moments of inertia. Their associated eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are called the principal axes. ${ }^{1}$

Example. Think about an American football: One principal axis $\mathbf{u}_{\mathbf{3}}$ is along the long axis, and the other two principal axes $\mathbf{u}_{1}, \mathbf{u}_{2}$ are in the 'equatorial plane,' with $I_{1}=I_{2}>I_{3}$.

The Charon Principal. If $I_{1}>I_{2}>I_{3}$, then rotation about the intermediate axis is unstable - asteroids tumble! (See Ian Stewart.)

Question. Are we sure that the orthogonal change of coordinates P has preserved the right-handedness of the coordinate system?

[^0]Fact. Suppose we have brought the symmetric 3×3 matrix A to diagonal form:

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\Lambda,
$$

where P is orthogonal, i.e., $P^{-1}=P^{T}$. Then there is a more careful choice of P that is a rotation about some axis.

Proof. We may exchange two columns of P, if necessary, to ensure that P has determinant 1. Swapping two columns of P only changes the order of two of the eigenvalues λ_{i} along the diagonal of Λ. In symbols, if E is the elementary matrix swapping the two columns, then because $A P=P \Lambda$, we have $A P E=P \Lambda E=$ $P E\left(E^{T} \Lambda E\right)$.

Because P is orthogonal, all its eigenvalues lie on the unit circle. Since $n=3$, one or all three must be real. But since P has determinant 1 , one eigenvalue belonging to a unit eigenvector w_{0} must be 1 . We now show P is rotation about w_{0}.

Because P is orthogonal, it is normal, and hence eigenspaces of P are reducing. In particular, the subspace S orthogonal to w_{0} is invariant under P. Find two perpendicular unit vectors $u_{0}, v_{0} \in S$. Then with respect this basis P has matrix

$$
O^{-1} P O=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right],
$$

where the lower right 2×2 block Q has determinant 1 .
The othogonal map P when cut back to S is again orthogonal, hence

$$
Q^{-1}=\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=Q^{T}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] .
$$

Hence $a=d$ and $b=-c$ giving $1=a d-b c=a^{2}+b^{2}$. Thus $a=\cos \theta$ and $b=-\sin \theta$. Thus P cut back to the plane S is a rotation. Hence P is a rotation about w_{0}.

[^0]: ${ }^{1}$ This is historically the form in which the spectral theorem first appeared.

