5.1 The Remainder and Factor Theorems; Synthetic Division

In this section you will learn to:

- understand the definition of a zero of a polynomial function
- use long and synthetic division to divide polynomials
- use the remainder theorem
- use the factor theorem

Example 1: Use long division to find the quotient and the remainder: $5593 \div 27$

Steps for Long Division:

- 1.
- 2.
- 3.
- 4.

Example 2: Use the "Steps for Long Division" to divide each of the polynomials below.

$$(x-5)$$
 $x^2-2x-35$

$$(7-11x-3x^2+2x^3)$$
÷ $(x-3)$

Example 3: Check your answer for the division problems in Example 2.

The Division Algorithm: If f(x) and d(x) are polynomials where $d(x) \neq 0$ and degree d(x) < degree f(x),

then
$$f(x) = d(x) \cdot q(x) + r(x)$$

If r(x) = 0 then d(x) and q(x) are **factors** of f(x).

Example 4: Perform the operation below. Write the remainder as a rational expression (remainder/divisor).

$$\frac{2x^5 - 8x^4 + 2x^3 + x^2}{2x^3 + 1}$$

Synthetic Division – Generally used for "short" division of polynomials when the divisor is in the form x - c. (Refer to page 506 in your textbook for more examples.)

Example 5: Use both long and short (synthetic) division to find the quotient and remainder for the problem below.

$$(2x^3 - 11x + 7) \div (x - 3)$$

Example 6: Divide $\frac{x^3 + 8}{x + 2}$ using synthetic division.

Example 7: Factor $x^3 + 8$ over the real numbers. (Hint: Refer to Example 6.)

Remainder Theorem	Factor Theorem	
the polynomial $f(x)$ is divided by $(x - c)$, then the remainder is $f(c)$.	Let $f(x)$ be a polynomial.	
	If $f(c) = 0$, then $(x - c)$ is a factor of $f(x)$.	
	If $(x - c)$ is a factor of $f(x)$, then $f(c) = 0$.	
	If $(x-c)$ is a factor of $f(x)$ or if $f(c) = 0$, then c is called a zero of $f(x)$.	

Example 8: $f(x) = 3x^3 + 4x^2 - 5x + 7$. Find f(-4) using

(a) synthetic division.

(b) the Remainder Theorem.

Example 9: Solve the equation $2x^3 - 3x^2 - 11x + 6 = 0$ given that -2 is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$.

5.1 Homework Problems:

For Problems 1-5, use long division to find each quotient, q(x), and remainder, r(x).

1.
$$(x^2 - 2x - 15) \div (x - 5)$$

2.
$$(x^3 + 5x^2 + 7x + 2) \div (x + 2)$$

3.
$$(6x^3 + 7x^2 + 12x - 5) \div (3x - 1)$$
 4. $\frac{x^4 - 81}{x - 3}$

4.
$$\frac{x^4 - 81}{x - 3}$$

$$5. \ \frac{18x^4 + 9x^3 + 3x^2}{3x^2 + 1}$$

For Problems 6 - 11, divide using synthetic division.

6.
$$(2x^2 + x - 10) \div (x - 2)$$

7.
$$(5x^3 - 6x^2 + 3x + 11) \div (x - 2)$$

6.
$$(2x^2 + x - 10) \div (x - 2)$$
 7. $(5x^3 - 6x^2 + 3x + 11) \div (x - 2)$ 8. $(x^2 - 5x - 5x^3 + x^4) \div (5 + x)$

9.
$$\frac{x^7 + x^5 - 10x^3 + 12}{x + 2}$$

10.
$$\frac{x^4 - 256}{x - 4}$$

11.
$$\frac{x^5 - 2x^4 - x^3 + 3x^2 - x + 1}{x - 2}$$

For Problems 12 – 16, use synthetic division and the Remainder Theorem to find the indicated function

12.
$$f(x) = x^3 - 7x^2 + 5x - 6$$
; $f(3)$

13.
$$f(x) = 4x^3 + 5x^2 - 6x - 4$$
; $f(-2)$

14.
$$f(x) = 2x^4 - 5x^3 - x^2 + 3x + 2$$
; $f\left(-\frac{1}{2}\right)$

15.
$$f(x) = 6x^4 + 10x^3 + 5x^2 + x + 1$$
; $f\left(-\frac{2}{3}\right)$

16. Use synthetic division to divide $f(x) = x^3 - 4x^2 + x + 6$ by x + 1. Use the result to find all zeros of f.

17. Solve the equation $2x^3 - 5x^2 + x + 2 = 0$ given that 2 is a zero of $f(x) = 2x^3 - 5x^2 + x + 2$.

18. Solve the equation $12x^3 + 16x^2 - 5x - 3 = 0$ given that $-\frac{3}{2}$ is a zero (root).

5.1 Homework Answers: 1.
$$q(x) = x+3$$
 2. $q(x) = x^2 + 3x + 1$ 3. $q(x) = 2x^2 + 3x + 5$

$$3. \quad q(x) = 2x^2 + 3x + 5$$

4.
$$q(x) = x^3 + 3x^2 + 9x + 27$$

4.
$$q(x) = x^3 + 3x^2 + 9x + 27$$
 5. $q(x) = 6x^2 + 3x - 1$; $r(x) = -3x + 1$ **6.** $q(x) = 2x + 5$

6.
$$q(x) = 2x + 5$$

7.
$$q(x) = 5x^2 + 4x + 11$$
; $r(x) = 33$ **8.** $q(x) = x^3 - 10x^2 + 51x - 260$; $r(x) = 1300$

8.
$$q(x) = x^3 - 10x^2 + 51x - 260; \quad r(x) = 130$$

9.
$$q(x) = x^6 - 2x^5 + 5x^4 - 10x^3 + 10x^2 - 20x + 40$$
; $r(x) = -68$ **10.** $q(x) = x^3 + 4x^2 + 16x + 64$

10.
$$q(x) = x^3 + 4x^2 + 16x + 64$$

11.
$$q(x) = x^4 - x^2 + x + 1$$
; $r(x) = 3$ **12.** -27 **13.** -4 **14.** 1 **15.** $\frac{7}{9}$

1 **15.**
$$\frac{7}{9}$$

16.
$$x^2 - 5x + 6$$
; $x = -1, 2, 3$ **17.** $\left\{-\frac{1}{2}, 1, 2\right\}$ **18.** $\left\{-\frac{3}{2}, -\frac{1}{3}, \frac{1}{2}\right\}$

17.
$$\left\{-\frac{1}{2}, 1, 2\right\}$$

18.
$$\left\{-\frac{3}{2}, -\frac{1}{3}, \frac{1}{2}\right\}$$

5.3 Roots of Polynomial Equations

In this section you will learn to:

- find zeros of polynomial equations
- solve polynomial equations with real and imaginary zeros
- find possible rational roots of polynomial equations
- understand properties of polynomial equatins
- use the Linear Factorization Theorem

Zeros of Polynomial Functions are the values of x for which f(x) = 0.

(Zero = Root = Solution = *x*-intercept (if the zero is a real number))

Example 1: Consider the polynomial that has exactly two zeros: 3 and ½

- (a) How many polynomials have such zeros?
- (b) Find a polynomial that has a leading coefficient of 1 that has such zeros.
- (c) Find a polynomial, with integral coefficients, that has such zeros.

If the same factor (x - r) occurs k times, then the zero r is called a zero with **multiplicity** k.

Even Multiplicity \rightarrow Graph **touches** *x*-axis and turns around.

Odd Multiplicity \rightarrow Graph crosses x-axis.

Example 2: Find all of the (real) zeros for each of the polynomial functions below. Give the multiplicity of each zero and state whether the graph crosses the x-axis or touches (and turns at) the x-axis at each zero. Use this information and the Leading Coefficient Test to sketch a graph of each function

(a)
$$f(x) = x^3 + 2x^2 - 4x - 8$$
 (b) $f(x) = -x^4 + 4x^2$ (c) $g(x) = -x^4 + 4x^3 - 4x^2$

(b)
$$f(x) = -x^4 + 4x^2$$

(c)
$$g(x) = -x^4 + 4x^3 - 4x^2$$

The Rational Zero Theorem: If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots \cdot a_2 x^2 + a_1 x + a_0$ has *integer* coefficients then $\frac{p}{a}$ (reduced to lowest terms) is a rational zero of f(x), where p is a factor of the constant term, a_0 , and q is a factor of the leading coefficient, a_n .

Example 3: List all possible rational zeros of the polynomials below. (Refer to Rational Zero Theorem on

Page 1 of this handout.)

(a)
$$f(x) = -x^5 + 7x^2 - 12$$

(a) $f(x) = -x^5 + 7x^2 - 12$ Possible Rational Zeros:

(b)
$$p(x) = 6x^3 - 8x^2 - 8x + 8$$

Possible Rational Zeros:

Example 4: Find all zeros of $f(x) = 2x^{3} - 5x^{2} + x + 2$.

Example 5: Solve $x^4 - 8x^3 + 64x - 105 = 0$.

Linear Factorization Theorem:

If
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
, where $n \ge 1$ and $a_n \ne 0$, then $f(x) = a_n (x - c_1)(x - c_2) \dots (x - c_n)$, where $c_1, c_2, c_3, \dots + c_n$ are complex numbers.

Example 6: Find all complex zeros of $f(x) = 2x^4 + 3x^3 + 3x - 2$, and then write the polynomial f(x) as a **product of linear factors**.

$$f(x) =$$

Properties of Polynomial Equations:

Given the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots \cdot a_2 x^2 + a_1 x + a_0$.

- 1. If a polynomial equation is of degree n, then counting multiple roots (multiplicities) separately, the equation has n roots.
- 2. If a + bi is a root of a polynomial equation $(b \ne 0)$, then the imaginary number a bi is also a root. In other words, imaginary roots, if they exist, occur in **conjugate pairs**.

Example 7: Find all zeros of $f(x) = x^4 - 4x^2 - 5$. (Hint: Use factoring techniques from Chapter 1.) Write f(x) as a product of linear factors.

f	(x) =			
.,	("")	 	 	

Example 8: Find a third-degree polynomial function, f(x), with real coefficients that has 4 and 2*i* as zeros and such that f(-1) = 50.

- Step 1: Use the zeros to find the factors of f(x).
- Step 2: Write as a linear factorization, then expand/multiply.

- Step 3: Use f(-1) = 50 to substitute values for x and f(x).
- Step 4: Solve for a_n .
- Step 5: Substitute a_n into the equation for f(x) and simplify.
- Step 6: Use your calculator to check.

5.3 Homework Problems:

For Problems 1-4, use the Rational Zero Theorem to list all possible rational zeros for each function.

1.
$$f(x) = x^3 + 3x^2 - 6x - 8$$

2.
$$f(x) = 2x^4 + 3x^3 - 11x^2 - 9x + 15$$

3.
$$f(x) = 3x^4 - 11x^3 - 3x^2 - 6x + 8$$

4.
$$f(x) = 4x^5 - 8x^4 - x + 2$$

For Problems 5 - 8, find the zeros for the given functions.

5.
$$f(x) = x^3 - 2x^2 - 11x + 12$$

6.
$$f(x) = 2x^3 - 5x^2 + x + 2$$

7.
$$f(x) = 2x^3 + x^2 - 3x + 1$$

8.
$$f(x) = x^3 - 4x^2 + 8x - 5$$

For Problems 9 - 12, solve each of the given equations.

9.
$$x^3 - 2x^2 - 7x - 4 = 0$$

10.
$$x^3 - 5x^2 + 17x - 13 = 0$$

11.
$$2x^3 - 5x^2 - 6x + 4 = 0$$

12.
$$x^4 - 2x^2 - 16x - 15 = 0$$

For Problems 13-16, find an *nth* degree polynomial function, f(x), with real coefficients that satisfies the given conditions.

13.
$$n = 3$$
; 1 and 5 i are zeros; $f(-1) = -104$

14.
$$n = 4$$
; 2, -2, and i are zeros; $f(3) = -150$

15.
$$n = 3$$
; 6 and -5 + 2 i are zeros; $f(2) = -636$

16.
$$n = 4$$
; i and $3i$ are zeros; $f(-1) = 20$

5.3 Homework Answers: 1.
$$\pm 1, \pm 2, \pm 4, \pm 8$$
 2. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$

3.
$$\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$$
 4. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}$ **5.** $-3, 1, 4$ **6.** $-\frac{1}{2}, 1, 2$

7.
$$\frac{1}{2}, \frac{-1 \pm \sqrt{5}}{2}$$
 8. $1, \frac{3 \pm i\sqrt{11}}{2}$ 9. $\{-1, 4\}$ 10. $\{1, 2 \pm 3i\}$ 11. $\{\frac{1}{2}, 1 \pm \sqrt{5}\}$

12.
$$\{-1, 3, -1 \pm 2i\}$$
 13. $f(x) = 2x^3 - 2x^2 + 50x - 50$ **14.** $f(x) = -3x^4 + 9x^2 + 12$

15.
$$f(x) = 3x^3 + 12x^2 - 93x - 522$$
 16. $f(x) = x^4 + 10x^2 + 9$