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Abstract A mesh redistribution method is introduced to solve the Kohn-Sham equation.
The standard linear finite element space is employed for the spatial discretization, and the
self-consistent field iteration scheme is adopted for the derived nonlinear generalized eigen-
value problem. A mesh redistribution technique is used to optimize the distribution of the
mesh grids according to wavefunctions obtained from the self-consistent iterations. After
the mesh redistribution, important regions in the domain such as the vicinity of the nucleus,
as well as the bonding between the atoms, may be resolved more effectively. Consequently,
more accurate numerical results are obtained without increasing the number of mesh grids.
Numerical experiments confirm the effectiveness and reliability of our method for a wide
range of problems. The accuracy and efficiency of the method are also illustrated through
examples.

Keywords Adaptive mesh redistribution · Harmonic map · Finite element method ·
Kohn-Sham equation · Density functional theory

1 Introduction

The Schrödinger equation is fundamental for the quantum mechanical description of elec-
tronic structures of matter, since it does not require any empirical input [32]. The time-
independent Schrödinger equation takes the following form

HΨ = EΨ, (1)
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where H is the Hamiltonian, and E and Ψ represent the energy eigenvalue and eigenstate
(wavefunction), respectively. Under most circumstances, it is too expensive to numerically
solve Eq. (1) because of the high dimensionality of the wavefunction Ψ . Therefore compu-
tationally more feasible models for electronic structures become very important for practical
simulations.

There are several computable models available for the electronic structure calculation
such as the Hartree-Fock method [6], the quantum Mento-Carlo method [27], the Kohn-
Sham density functional theory [25], and the orbital-free density functional theory [3, 14].
Among these models, the Kohn-Sham density functional theory has the advantage that
the Hohenberg-Kohn theorem [10] theoretically guarantees the ground-state electron den-
sity to uniquely determine all properties of an electronic system. To numerically solve the
Kohn-Sham equation, there are many methods in the market, such as the planewave expan-
sion method [20], the finite difference method [8], the finite element method [21, 29, 32],
the wavelet method [35], the discontinuous Galerkin method [24], and the mesh-free
method [33]. In this paper, we focus on the finite element method because of its attractive
features. For example, by using the finite element method, boundary conditions of various
types can be handled straightforwardly. Also, the physical domain with a complex geome-
try can also be handled without technical difficulty, which makes the finite element method
more suitable for the practical simulation.

In previous works about finite element methods, it is indicated that a radial mesh seems to
be a good choice for solving the Kohn-Sham equation because of the existence of the exter-
nal potential. In the Kohn-Sham Hamiltonian, the external potential describes the attraction
between the nucleus and the electron. This term is very singular in the vicinity of the nu-
cleus. A radial mesh has small mesh size in the vicinity of each nucleus, and large one in the
region away from nucleus. With this configuration of mesh grids, both the numerical accu-
racy and the efficiency could benefit because less mesh grids are needed to effectively solve
the singular external potential, compared with the uniform mesh case. Two well-designed
non-uniform meshes are given in [32] and [21] respectively, and excellent numerical results
are presented there. But meshes in [32] and [21] are generated beforehand and remain static
during the simulation. In this paper, we are going to adopt a mesh adaptive technique that
provides a possible way to dynamically generate a radial mesh. It means that the distribu-
tion of the mesh grids and/or the mesh topology could be adjusted during the simulation
according to, for example, the profile of the electron density. This is advantageous when the
structure of the electronic system or the physical domain is complex and evolves with time.
In such case, to generate a quality mesh in advance is not trivial.

There are three classical adaptive methods: the h-adaptive methods which locally refine
and coarsen the mesh, the r-adaptive methods which redistribute the grid points while keep-
ing the number of mesh grids unchanged, and the p-adaptive methods which locally enrich
the order of the approximate polynomial. The r-adaptive method is also known as the mov-
ing mesh method, which has been widely used in a variety of fields such as the computational
fluid dynamics [34, 38], phase-field model [2, 40], reaction-diffusion models [12], unstable
flow in porous media [11]. The reviews of the moving mesh method can be found in [1, 13].
An interesting discussion is found in [35] for numerically solving the Kohn-Sham equation:
“The question of the feasibility of molecular dynamics with an unstructured nonuniform
FE-mesh is often raised. The FE-community provides the following suggestion, based on
experience in other fields: each atom is attached to the mesh, and the mesh is considered to
be made of ‘rubber’. As the atom moves, the mesh moves along. . . ”. Based on our numerical
experience, r-adaptive methods can partially satisfy the above requirements. A motivation
of our current work is to propose a framework for solving the Kohn-Sham equation by using
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the r-adaptive methods. For the early work on this topic, we refer to [37] and references
therein, where the curvilinear coordinate method is utilized to improve the mesh quality.

In this paper, we present a finite element solver with an r-adaptive technique to simulate
the Kohn-Sham equation with tetrahedral meshes. The solver consists of two main itera-
tions. The first one is a self-consistent field (SCF) iteration to generate the self-consistent
electron density on the current mesh, while the second iteration is adopted to adaptively
optimize the distribution of mesh grids in terms of the self-consistent electron density. The
Kohn-Sham equation is discretized by the standard finite element method. After the self-
consistent electron density is obtained, the moving mesh method is implemented to improve
the mesh quality. The idea of our moving mesh method was originally proposed by Dvin-
sky [5] based on the observation that a uniform mesh can be mapped to a nonuniform mesh
via the Harmonic maps. Li et al. [22] extended this idea to the high dimensional cases, and
used an iterative scheme to derive the Harmonic map which enhanced the stability of the al-
gorithm and effectively prevented the mesh tangling. This framework has been widely used
on diverse applications. A review of the method may be found in [34]. In this framework,
the so-called monitor function is of particular importance since it is used to partially control
the movement of the mesh grids. In the domain for the Kohn-Sham equation, compared to
the distant regions from the atom, the regions around the atomic nuclei and between atoms
of chemical bonds are more important [42]. Consequently, the demand of the grid points in
these regions is large for resolving the wavefunctions effectively. In these important regions,
the variation of the wavefunctions is much larger than that in the other regions. Therefore,
the monitor function is designed based on the gradient of the wavefunctions in this paper. In
practice, the smoothing of the monitor function is necessary for keeping the mesh quality.
We follow [11, 40] to smooth the monitor function.

In our simulations, the Hartree potential is obtained by solving the Poisson equation
with an algebraic multi-grid (AMG) method. The exchange-correlation potential is approx-
imated by the local density approximation (LDA). The zero Dirichlet boundary condition
is used for the Kohn-Sham equation, and the multipole expansion method is used to give
the boundary value of the Hartree potential in the Poisson equation. To solve the gen-
eralized eigenvalue problem, the locally optimal block preconditioned conjugate gradient
(LOBPCG) method [17] is used. To improve the convergence of the SCF iteration, a linear
mixing scheme is adopted to update the electron density.

The outline of this paper is as follows. In the next section, the DFT and the Kohn-Sham
equation are introduced. In Sect. 3, the finite element discretization of the Kohn-Sham equa-
tion is described. The mesh redistribution technique is introduced in Sect. 4. In Sect. 5, some
details of numerical techniques are discussed on our algorithm. Numerical simulations are
demonstrated in Sect. 6, which illustrate the reliability and the effectiveness of our method.
Finally, the paper is concluded with some general remarks as well as discussions on future
directions in Sect. 7.

2 The Kohn-Sham Equation

In [18], Kohn and Sham presented the following self-consistent equation to investigate the
minimization of the total energy of a many-electron system (we use the atomic units e2 =
� = m = 1 hereafter)

(
T̂ + veff (x)

)
ψi(x) = εiψi(x), (2)
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where T̂ = − 1
2 ∇2 denotes the kinetic energy, εi and ψi denote the i-th eigenvalue and

wavefunction respectively, and veff (x) is the effective potential with the following expression

veff (x) = vext(x) + vHartree(x) + vxc(x). (3)

The electron density can be obtained as

n(x) =
occ∑

i

∣∣ψ(x)
∣∣2

, (4)

where occ denotes the number of occupied states. For a closed system of M nuclei and N

electrons, the external potential

vext(x) = −
M∑

i

Zi

|x − xi | , (5)

describes the attraction between the nucleus and electron. Here Zi is the i-th nucleus charge,
and xi is the position of the i-th nucleus. The Hartree potential vHartree is the Coulomb
interaction of electrons

vHartree(x) =
∫

n(x′)
|x − x′|dx′. (6)

In the simulation, direct evaluating the above integral will result in O(N2) operations, which
is very time-consuming. A popular way to address vHartree is to solve the following Poisson
equation

−∇2vHartree(x) = 4πn(x) (7)

with a proper Dirichlet boundary condition.
The last term in (3) is the exchange-correlation potential vxc(x). This term is caused

by the Pauli exclusion principle and other non-classical Coulomb interactions. The ana-
lytical expression of the exchange-correlation potential for a general system is in general
unknown. Thus this term needs to be approximated. The most popular way is to use the
local density approximation (LDA) originally proposed by Kohn and Sham in [18]. The
exchange-correlation energy ELDA

xc (n) is given as

ELDA
xc (n) =

∫
εxc(n)n(x)dx, (8)

where εxc(n) stands for the exchange-correlation energy per unit volume of the homoge-
neous electron gas of the density n. Then vxc can be addressed as

vxc(x) = δExc

δn
. (9)

The exchange-correlation energy Exc can be separated as two parts Exc = Ex + Ec. We
adopt the expression of the exchange energy Ex proposed in [18]

ELDA
x (n) = −3

4

(
3

π

)1/3 ∫
n(x)4/3dx. (10)

Then vx = −(3n(x)/π)1/3. The approximation of Ec is much more complicated than that
of Ex . Even in the free electron gas, we only know the expressions of Ec of the high-
density limit and the low-density limit. In the simulation, the parametrization of Perdew and
Wang [30] is adopted.
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The ground state energy of the physical system can be calculated from the solution of the
Kohn-Sham equation:

E =
occ∑

i

εi −
∫ (

1

2
vHartree + vxc

)
n(x)dx + Exc. (11)

Note that for the simulations of a molecule which contains several nuclei, the total energy
should be added to a repulsive Coulomb term that accounts for the interactions between the
nuclei

Enn =
∑

j,k

ZjZk

|xj − xk| .

From (2), one can see that the wavefunction ψi(x) depends on the effective potential
veff (x), while the electron density n(x) defined as in (4) determines the effective potential
veff (x) in the meantime. That means Eq. (2) is non-linear, and we need an SCF method to
solve it. To solve (2), many numerical methods have been proposed. Here, we focus on the
finite element method for discretizing the governing equation because of its flexibility for
different geometries and boundary conditions. The finite element discretization of (2) will
be introduced in the next section.

3 Numerical Discretization

From now on, let us assume that the physical domain Ω ⊂ R3 is bounded, and Ω is divided
into a set of tetrahedron T with Ti as its element and Xi as its nodes. The piecewise linear
finite element space Vh is built on T . Note that for the linear finite element case, the inter-
polation points of the degrees of freedom (DOF) in each element locate on the vertexes of
the tetrahedral element (3D case).

Based on the above assumptions, the wavefunction ψ(x) in (2) can be approximated as

ψh =
Nbasis∑

i

ψiφi, (12)

where Nbasis stands for the dimension of space Vh, and φi is the i-th basis function and ψi is
its coefficient, which is also the value of the wavefunction itself on the corresponding node.

For the finite element method, the variational approach is used to find out the coefficients
ψ = {ψi}, i = 1,2, . . . ,Nbasis, which leads to the following linear system

Aψ = εBψ. (13)

Here A and B are two matrices with the entries

Ai,j = 1

2

∫

Ω

∇φi · ∇φjdx +
∫

Ω

veff φiφjdx, (14)

Bi,j =
∫

Ω

φiφjdx, (15)

respectively.
Equation (13) is a generalized eigenvalue problem with properties that the matrices A and

B are both Hermitian, and the mass matrix B is positive definite. There are many solvers
in the literature to solve this kind of problem. In our algorithm, the locally optimal block
preconditioned conjugate gradient (LOBPCG) method [17] is employed.
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To discretize the Poisson equation (7), we use the same finite element space mentioned
above. The Hartree potential vHartree can be approximated as

vH,h =
Nbasis∑

i

vH,iφi, (16)

where vH,i is the coefficient of the i-th basis function φi . Let vH = {vH,i}, i = 1,2, . . . ,Nbasis,
then the final system can be read as

PvH = f, (17)

where P is the stiffness matrix with entry

Pi,j =
∫

Ω

∇φi · ∇φjdx, (18)

and the right hand side f is a vector with entry

fi =
∫

Ω

4πn(x)φidx. (19)

Note that in the above integration, the evaluation of the electron density n(x) on a quadrature
point xq is given by

n(xq) =
occ∑

i

Nbasis∑

j,k

φjψi,j (xq)φkψi,k(xq).

An efficient solver for the Poisson equation is important, because (17) needs to be solved
in each SCF iteration. In our algorithm, the algebraic multi-grid method is adopted.

The electron density is obtained by an SCF iteration. That is, the wavefunction ψ is
solved from (13), and then the electron density n(x) is obtained from (4). Then the effective
potential in (2) is evaluated in terms of the new n(x). To end up the SCF iteration, the
following criterion is used

∥∥nk+1(x) − nk(x)
∥∥

2
< tol, (20)

where nk(x) and nk+1(x) mean the electron densities obtained from two adjacent iterations,
and tol is an user-defined tolerance. Because there are a lot of ingredients which may affect
the convergence of an SCF iteration such as the quality of the initial guess of the wavefunc-
tion, the complexity of the electronic structure, and the mixing scheme used in the iteration,
it is nontrivial to get a convergent result. We use tol = 1.0e − 04 in numerical simulations.

Once the self-consistent electron density is obtained, an adaptive technique will be em-
ployed to optimize the distribution of the mesh grids. Then the SCF iteration will be imple-
mented on this new mesh, and more accurate numerical results can be expected. In the next
section, the mechanism of this adaptive technique is introduced.

4 Mesh Redistribution

The mesh redistribution method in this paper is based on the harmonic maps, which can
generate the nonuniform mesh from a uniform one. In [5], a framework for the movement of
the mesh grids is proposed based on the harmonic mapping. Then it is effectively extended
to the high dimensional cases in [22] and [23]. In the following subsection, the harmonic
map is briefly introduced first. Then detailed implementation of this method is presented.
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4.1 Harmonic Maps

Suppose there are two compact Riemannian manifolds Ω and Ωc with the metric tensors
dij and rαβ in certain local coordinates x and ξ . Define a map ξ = ξ(x) between Ω and Ωc ,
then the energy of this map is given by

E(ξ) = 1

2

∫

Ω

√
ddij rαβ

∂ξα

∂xi

∂ξβ

∂xj
dx, (21)

where d = det(dij ), (dij ) = (dij )−1, and the standard summation convention is assumed. If
the map ξ is an extremum of (21), ξ is called a harmonic map. This map is the solution of
the following Euler-Lagrange equation

1√
d

∂

∂xi

√
ddij ∂ξ k

∂xj
+ dijΓ k

βγ

∂ξβ

∂xi

∂ξγ

∂xj
= 0,

where

Γ k
βγ = 1

2
rkλ

[
∂rλβ

∂ξγ
+ ∂rλγ

∂ξβ
− ∂rβγ

∂ξλ

]

is the Christoffel symbol of the second kind. Theoretically, the existence and uniqueness
of the harmonic map ξ is guaranteed by the Hamilton-Schoen-Yau theorem [9, 31] when
Ωc is nonpositive and its boundary ∂Ωc is convex. These requirements are easily satisfied
in practice. First of all, both Ω and Ωc are defined in the three dimensional Euclidean
space, the curvature of Ωc is zero which is obviously nonpositive. A simple choice of Ωc

in the numerical simulations is a unit cube, which is obviously convex for its boundary.
Furthermore, the employment of the Euclidean space causes Γ k

βγ = 0. Hence the above
Euler-Lagrange equation becomes

∂

∂xi
Gij ∂ξ k

∂xj
= 0, (22)

and corresponding energy becomes

E(ξ) =
∑

k

∫

Ω

Gij ∂ξk

∂xi

∂ξ k

∂xj
dx, (23)

where Gij = √
ddij . Following [23], we call Ω the physical domain, Ωc the logical domain,

and M = (Gij )−1 the monitor function.

4.2 Mesh Redistribution Using Harmonic Maps

Suppose the SCF iteration has been finished on current mesh, and the self-consistent electron
density and wavefunctions have been obtained. What we do in the next step is to reasonably
redistribute the mesh grids in terms of those self-consistent quantities, with the help of the
harmonic map.

In practice, the harmonic map is reached by an iterative procedure. Assume that an initial
(fixed) mesh on the logical domain Ωc is given, the general framework of generation of the
harmonic map can be described as the following.
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Flow Chart of the Algorithm 1

S.1 obtain the difference between the current mesh which is obtained from solving
(24) and the initial mesh in the logical domain Ωc. If the L∞ norm of the difference
is smaller than a given tolerance, the mesh redistribution is done, otherwise, go to
next step;

S.2 obtain the directions and the magnitudes of the movement of mesh grids in the
physical domain Ω in terms of the difference given in S.1, and then update the
mesh in the physical domain;

S.3 update solutions on the updated mesh in the physical domain, then go to S.1.

In [22], the system which is used to generate the mesh in the logical domain in S.1 is (22)
together with a Dirichlet boundary condition. However, with this system, only the interior
grids are redistributed, while the positions of the grid points on the boundary are unchanged.
Under this situation, the redistribution of grids on the boundary of the physical domain
should be handled separately, such as using homogeneous Neumann boundary conditions,
extrapolating the interior mesh points to the boundary, and relocating the mesh points by
solving a lower-dimensional moving-mesh PDE. However, all these strategies may affect
the efficiency of the algorithm.

To redistribute the mesh points in a uniform manner, Li et al. [23] proposed an optimiza-
tion problem for the harmonic map in place of the boundary value problem in [22]. The
optimization problem can be read as

⎧
⎪⎨

⎪⎩

min
∑

k

∫

Ω

Gij ∂ξk

∂xi

∂ξ k

∂xj
dx,

s.t. ξ |∂Ω = ξb ∈ K,

(24)

where K = {ξb ∈ C0(∂Ω)|ξb : ∂Ω → Ωc; ξb|Λi
is a piecewisely linear mapping without

degeneration of the Jacobian} denotes a mapping set from ∂Ω to ∂Ωc . By solving the above
optimization problem with different Gij , the interior mesh points and ones on the boundary
move simultaneously in the logical domain Ωc .

In the following, details in each step of Algorithm 1 will be briefly demonstrated. As-
sume that the tetrahedral mesh in the physical domain Ω is denoted by T , with Ti as its
element, and Xi as its node. For the logical domain Ωc , we use Tc to denote the correspond-
ing tetrahedral mesh, and Ti,c and Ai as its element and node, respectively.

To obtain the initial mesh in the logical domain Ωc, we need to generate the initial mesh
T ini

c in the logical domain Ωc by solving the following optimization problem
⎧
⎪⎨

⎪⎩

min
∑

k

∫

Ω

∑

i

(
∂ξ k

∂xi
)2dx,

s.t. ξ |∂Ω = ξb ∈ K.

(25)

This initial mesh T ini
c is only used as a reference, and it is unchanged during the whole

procedure.
In the first step of the Algorithm 1, the optimization problem (24) needs to be solved.

Note that at the current stage, we only try to improve the mesh quality i.e., not the physical
solution, the efficiency of the solver for (24) is more important than its accuracy. However,
the linear system which is obtained from (24) is neither Hermitian nor positive definite,
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which takes difficulty for the efficient solver. To resolve this difficulty, it was suggested
in [23] that the system be decoupled into two smaller systems: one is for the grid points on
the boundary, and the other one is for the interior grid points. Although there is also no good
property for the first system, it is much smaller than the original system, and a generalized
minimal residual method (GMRES) or a biconjugate gradient (BiCG) method can be used
to solve it. For the second one, a multi-grid method is adopted to solve it because it has good
properties (Hermitian and positive definite).

To further improve the efficiency of the solver for (24), Di et al. [4] proposed a new
approach to speed up the implementation. This new approach is based on an algebraic multi-
grid method, together with a constraint for grid points on the boundary. In our simulations,
this technique is adopted for solving (24). We refer to [4] and references therein for details.

After (24) is solved, we obtain a mesh Tc in the logical domain Ωc . If the L∞ norm of
the difference between Tc and T ini

c is small enough, say,
∥∥Tc − T ini

c

∥∥∞
L

< tol,

the iteration is stopped, otherwise we will use the difference between Tc and T ini
c to generate

the movement of mesh grids in physical domain Ω .
In Step 2 of Algorithm 1, we use the following formula to generate the direction and

magnitude of movement for each mesh grid in the physical domain,

δXi =
∑

T |T | ∂x
∂ξ

|inT δAi
∑

T |T | ,

where δAi = Aini
i − Ai , and T stands for the element in the physical domain which has Xi

as one of the vertex, and |T | is its volume. In the above formula, ∂x/∂ξ is given by solving
the following system in each element,

⎛

⎜
⎝

A1
Tc,1

− A1
Tc,0

A1
Tc,2

− A1
Tc,0

A1
Tc,3

− A1
Tc,0

A2
Tc,1

− A2
Tc,0

A2
Tc,2

− A2
Tc,0

A2
Tc,3

− A2
Tc,0

A3
Tc,1

− A3
Tc,0

A3
Tc,2

− A3
Tc,0

A3
Tc,3

− A3
Tc,0

⎞

⎟
⎠

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

∂x1

∂ξ 1

∂x1

∂ξ 2

∂x1

∂ξ 3

∂x2

∂ξ 1

∂x2

∂ξ 2

∂x2

∂ξ 3

∂x3

∂ξ 1

∂x3

∂ξ 2

∂x3

∂ξ 3

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎝

X1
T ,1 − X1

T ,0 X1
T ,2 − X1

T ,0 X1
T ,3 − X1

T ,0

X2
T ,1 − X2

T ,0 X2
T ,2 − X2

T ,0 X2
T ,3 − X2

T ,0

X3
T ,1 − X3

T ,0 X3
T ,2 − X3

T ,0 X3
T ,3 − X3

T ,0

⎞

⎟
⎟
⎠ ,

where (X1
T ,i ,X

2
T ,i ,X

3
T ,i ) means the i-th vertex of the element T in physical domain Ω ,

and (A1
Tc,i

,A2
Tc,i

,A3
Tc,i

) means the i-th vertex of its corresponding element Tc in logical do-
main Ωc . Because the topological structure of the mesh will not change during the iteration,
the correspondence between the meshes in Ω and Ωc will also not change.

After we get δXi , the grid point Xi in the physical domain Ω is updated by

Xnew
i = Xi + τδXi,

where τ ∈ [0,1]. Here τ is used to prevent the mesh tangling.
The update of the wavefunctions is designed under the assumption that the surface of

the numerical solution does not move during the mesh redistribution. For the details in
the implementation, we refer to [22]. It worth mentioning that this method is one kind of
interpolation-free solution-updating methods, which makes the implementation much sim-
pler than the interpolation methods, especially for the tetrahedral mesh case. In fact, only
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an ordinary differential equation is solved for each wavefunction in the update process. Fur-
thermore, the requirement on the numerical accuracy is not crucial for our time-independent
problem because a rough solution update still give us a quite good approximation for the
next SCF iteration. Consequently, the low-order, highly efficient numerical schemes such as
the Euler schemes, can be adopted to solve that ODE system. A potential issue for this up-
date method is that the electron density may no longer be conserved in the physical domain.
To avoid this issue, each wavefunction is normalized before the SCF iteration.

The monitor function in (24) is important in the simulations. A good monitor function
can help on resolving the important regions in the physical domain with the mesh grids,
while keeps the mesh quality. In the following subsection, a monitor function is given, and
a special smoothness strategy of the monitor function is also discussed.

4.3 Monitor Function

As mentioned in the introduction, the important regions in the simulation of the Kohn-Sham
equation are the vicinity of nucleus and between atoms of chemical bonds. Based on our
numerical experience, the variation of the wavefunctions in those regions is much larger
than that in other regions. Therefore, we choose the following monitor function

M =
(√√√

√ε +
occ∑

i

|∇ψi(x)|2
)

I, (26)

where I stands for an identity matrix. With (26), the grid points move towards the region
with large gradient of the wavefunctions, and the adaptivity is controlled by the parameter ε.
The smaller ε results in more adaptivity. Note that the problem is non-periodic, a sufficiently
large domain is needed to reduce the truncation error. At the meantime, the large variation
of the density only appears in the vicinity of the nucleus, which is a relatively small region.
Consequently, the monitor function (26) results in a dramatic change of the mesh size around
the nucleus. Figure 1(a) and (b) demonstrates this phenomena. Two drawbacks are observed
from the figure: (i), although the density of grid points in the vicinity of the nucleus becomes
large after the movement of the mesh, the large distortion of the element is also observed
near the nucleus, which may negatively affects on the quality of the numerical results and
the convergence of the SCF iteration; (ii), there are too many grid points in the outer layer
of the domain. Because there is almost no variation of the wavefunctions far away from
the nucleus, the positions of grid points in that region are almost unchanged by using the
monitor function (26). Based on the above two observations, moving the grid points in the
region away from the nucleus towards to the important regions is a good idea to further
improve the mesh quality.

A similar situation which is mentioned above has been discussed by Wang et al. in [40].
They avoid this problem by introducing a diffusive process in the monitor function. This
strategy is also adopted by Hu and Zegeling in [11]. In the following, we will give the
implementation of this technique in our algorithm.

Besides those two terms in (26), a new term ñ which is the solution of the following
equation

∂ñ

∂t
− δ�ñ = 0 (27)

is added, where δ is a parameter which depends on the size of the physical domain. The
initial value of ñ is given by ñ0 = ∑occ

i |∇ψi(x)|2. With the function ñ, the monitor function
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Fig. 1 The demonstration of a slice of the 3-dimensional mesh in the plane (0,0,1) after the mesh redistri-
bution. (a) and (b) are generated with (26), while (c) and (d) are generated with (28). (b) and (d) show the
detailed mesh around the nucleus of the whole mesh (a) and (c) respectively

becomes the following form

M =
(√√

√√ε + ñ +
occ∑

i

∣
∣∇ψi(x)

∣
∣2

)

I. (28)

Because we only want a rough solution for (27), the variable ñ is just propagated one or two
times, the increment of the CPU time which is caused by solving (27) is not significant, with
the help of the AMG method. The significant improvement of the mesh can be observed
from Fig. 1(c) and (d).

We close this section with the following remarks.

– Besides the harmonic mapping method, there are also other methods which are used to
realize the mesh redistribution. We refer to [13] and references therein for those methods.

– Note that the monitor function M in (28) is defined by a scalar value multiplying an iden-
tity matrix. This results in an isotropic mesh in our simulations. In fact, the anisotropic
mesh can also be generated by using this framework with an anisotropic monitor func-
tion [13].
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5 Computational Issues

We have stated the finite element discretization of the Kohn-Sham equation, and introduced
Algorithm 1 to improve the quality of the numerical results. In this section, we present a
few of the technical details in the algorithm, and the flow chart of the whole algorithm at the
end.

5.1 Boundary Conditions

To solve the equations (13) and (17), appropriate boundary conditions are needed. For (13),
the zero Dirichlet boundary conditions are adopted naturally when the size of the physical
domain Ω is sufficiently large. However, for (17), because the Hartree potential decays as
N/r, where N is the electron number, the simple use of zero Dirichlet boundary condition
will introduce large truncation error on the boundary. To give the evaluation of the Hartree
potential on the boundary, (6) can be used directly. However, it results in a O(N

5
3 ) operations

in the algorithm, which is not consistent with O(N) of the AMG solver. To reduce the cost, a
multipole expansion approximation is employed for the boundary values. In the simulations,
the following approximation is used

VHartree(x)|x∈∂Ω ≈ 1

|x − x′′|
∫

Ω

n
(
x′)dx′ +

∑

i=1,2,3

pi · xi − x ′′,i

|x − x′′|3

+
∑

i,j=1,2,3

qij · 3(xi − x ′′,i )(xj − x ′′,j ) − δij |x − x′′|2
|x − x′′|5 , (29)

where

pi =
∫

Ω

n
(
x′)(x ′,i − x ′′,i)dx′, qij =

∫

Ω

1

2
n
(
x′)(x ′,i − x ′′,i)(x ′,j − x ′′,j )dx′.

In the above expressions, x′′ stands for an arbitrary point in Ω . In the implementation, the
following choice

x′′ =
∫

xn(x)dx
∫

n(x)dx

is always a reasonable one.
Note that the accuracy of the approximate Hartree potential at a point x by using the

multipole expansion depends on the distance between x and x′′, which means that a good
approximation can be expected when |x − x′′| is sufficiently large. Consequently, a suffi-
ciently large computational domain is needed in the numerical simulations. To investigate
the relation between the numerical error and the size of the domain when the multipole ex-
pansion method is adopted, the following numerical experiment is presented. Suppose the
electron distribution is given as

n(x) =
∑

i=1,2

Zi

(
bi

π

)3/2

e−bi |x−ai |2 ,

which imitates the electron distribution of a diatomic molecule. Here a1 = (2,0,0), a2 =
(−2,0,0), b1 = 0.8, b2 = 0.6, Z1 = 6, and Z2 = 4. For this electron distribution, the analyt-
ical Hartree potential is given by

vHartree =
∑

i=1,2

Zi

erf (
√

bi |x − ai |)
|x − ai | ,
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Fig. 2 The relation between the
L2 error of the approximate
Hartree potential and the domain
size

where erf stands for the error function. To numerically solve the above problem, the finite
element method which is described in Sect. 3 is employed. The exact boundary value and
the approximate one which is given by (29) are considered respectively. The computational
domain is a cube, and different sizes are used, from [−10,10]3 to [−60,60]3. Here, the
atomic unit (a.u.) is used. For the mesh, the sizes of the tetrahedral element around the
origin point are approximately kept, only the size of the domain is enlarged. An algebraic
multigrid solver is developed to efficiently solve the resulting linear system. This is also the
solver we used in the algorithm for generating the Hartree potential. The difference of the
L2 error between the exact one and the approximate one is demonstrated in Fig. 2.

From Fig. 2, it can be obviously observed that the difference of the L2 error between
the exact one and the approximate one becomes small when the size of the computational
domain becomes large. It is only 7.0e−04 when the size [−60,60]3 is adopted, which shows
that the multipole expansion method works very well in the implementation. However, to
balance the accuracy of the numerical solutions and the efficiency of the algorithm, the
selection of the size of the computational domain is problem dependent in the simulations.

5.2 Self-Consistent Field Iteration

It is nontrivial to get the convergence for the SCF iterative procedure. For the convergence
analysis of the SCF iteration, we refer to [41] and references therein.

The commonly used techniques for helping the SCF convergence are the extrapolation
method, the damping method, the level shifting method, and the direct inversion in the iter-
ative subspace (DIIS) method, etc. Among these techniques, the DIIS method has proved to
be very efficient in forcing the convergence and in reducing the number of iterations at the
same time. However, it demands considerable memory to save a sequence of wavefunctions
in previous iteration steps, especially when a complicated electronic structure is simulated.
Comparatively speaking, the damping method is quite efficient because only the wavefunc-
tions in the last iteration step are needed. The damping method can effectively prevent the
divergence which is caused by the oscillations. In our simulations, the following damping
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method is adopted. Suppose that in the k-th iteration step, the new electron density ñk+1 has
been calculated from the electron density nk . Then the following formula is used to generate
nk+1.

nk+1 = γ ñk+1 + (1 − γ )nk, (30)

where 0 < γ < 1. In the simulations, we always use γ = 0.7. In all of our numerical sim-
ulations, the convergence of the SCF iteration is successfully achieved with the help of the
above damping method. Note that we let tol = 1.0e − 04 in (20).

Now we are ready to give the flow chart of the whole algorithm.

Flow Chart of the Algorithm 2

Input: The initial guess ψ ini
i for the wavefunctions. Let n0(x) = nini(x), and i, k = 0.

S.1 With nk(x), get the evaluation of vHartree by solving (17), and the evaluations of vext

and vxc with (5) and (9) respectively. Then the generalized eigenvalue problem (13)
is obtained.

S.2 Using LOBPCG method to solve (13) to obtain the ψk+1 and ñk+1(x). If (20) is not
satisfied, update nk+1(x) by using (30), and let k = k +1, then goto S.1; Otherwise,
calculate the approximate ground state energy Ei by using (11), and goto S.3

S.3 If |Ei − Ei−1| < etol, goto Output;
Otherwise, use Algorithm 1 to redistribute the grid points and update the solutions,
and goto S.1.

Output: the approximation of the ground state density, the total energy, and wave-
functions.

In the above algorithm, Ei and Ei+1 are the energies of the ground state from two adjacent
iteration steps, and in the implementation, etol = 1.0e − 02 is used.

6 Numerical Examples

In this section, the convergence of the proposed method is examined first. Then several
simulations are implemented to show the reliability and effectiveness of our method. All
simulations are implemented by using a C++ library AFEABIC (Adaptive Finite Element
package for the AB-Initio Calculations). In this library, the Libxc [26] and APE (Atomic
Pseudopotential Engine) [28] are employed for the generation of the exchange-correlation
potential and the pseudopotential, respectively. Currently, this library is still under develop-
ment by the authors. The hardware configuration is a personal desktop with Intel Pentium
3.33 GHz CPU and 4 GB of RAM. For all simulations in this section, the wavefunctions are
initialized randomly.

Example 1 Solve the equation

−1

2
∇2u − 1

|x|u = λu (31)

with Algorithm 2. The lowest eigenvalue of this equation is −0.5.
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Fig. 3 Convergence rate of the
eigenvalue with fixed uniform
mesh and with mesh
redistribution for Example 1

The above equation models the hydrogen atom. The physical domain is chosen as
[−10,10]×[−10,10]×[−10,10]. The uniform mesh is refined successively from the coars-
est one which contains 63 grid points. The results are demonstrated in Fig. 3, which shows
that both the convergence rate and the accuracy obtained with the mesh redistribution are
superior to that of the fixed uniform mesh. With the refinement of the mesh, the conver-
gence order of solver with mesh redistribution reaches around 1.9, which shows that the
eigenvalue of this equation converges at the expected rate of the convergence for the linear
finite element method.

Example 2 Simulate the selected atoms by using the all-electron calculation.
First of all, the helium atom is studied in detail. For the all-electron calculation, the

external potential (5) is very singular around the nucleus. An initial uniform mesh may
result in a large number of mesh grids to effectively resolve this singularity, which cause
difficulties for convergence study of our method. Therefore, a rough radial mesh is used
in the simulation. The coarsest mesh has 505 nodes, and the mesh is successively refined
three times to investigate the convergence of the total energy of the ground state. Besides
the numerical accuracy, the CPU time needed in the simulation is also studied. The results
are shown in Fig. 4, and the following two observations can be made from the results.

– With the successive refinement of the mesh, both results (with and without mesh redistri-
bution) converge to the reference energy, −2.83 a.u. for helium atom [19]. Furthermore,
with the same number of the mesh grids, the mesh redistribution method significantly
improves the accuracy of the numerical solution.

– To get the same accuracy of the numerical solution, our mesh redistribution method al-
ways needs less mesh grids and less CPU time, compared with fixed mesh case. For
example, much more than 26903 mesh grids and 115 CPU seconds are needed by fixed
mesh case to get the total energy −2.63 a.u., while it can be done only with around 3568
mesh grids and 32 CPU seconds with the help of our mesh redistribution method. In other
words, both the storage and the CPU time required by the simulation are effectively saved
simultaneously, with our mesh redistribution method.
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Fig. 4 Numerical results for
helium atom in Example 2. The
number in the figure stands for
the number of mesh grids in each
simulation. The reference value
for the total energy is −2.83 a.u.

Table 1 Ground state energies
of selected atoms (a.u.) This work KS-LSDA [19] Experiment [39]

Helium −2.83 −2.83 −2.904

Lithium −7.33 −7.34 −7.478

Boron −24.30 −24.34 −24.6579

There are two methods which can further reduce the CPU time. The first one is to use
a better initial guess for the wavefunction. A random initialization for the wavefunctions
is adopted in the simulation, so the initial SCF iteration is needed for generating the re-
liable monitor function. If the wavefunction is well-initialized, this first SCF iteration can
be avoided. Also, a better initialization can effectively accelerate the convergence of the
SCF iteration. The second one is to use a big tolerance in the first SCF iteration. With a
big tolerance, the number of the SCF iteration can be effectively reduced. After the first
SCF iteration, a small tolerance is adopted for the numerical accuracy. With the above two
methods, the CPU time can be further reduced.

Finally, the total ground state energies of some selected atoms are shown in Table 1. It
can be obviously seen that our algorithm gives very good approximation.

Example 3 Simulate the selected atoms by using the Troullier-Martin [36] pseudopotential.
In the simulations, the norm-conserving Troullier-Martin pseudopotential is employed.

To enhance the efficiency of the implementation of the pseudopotential calculations, the
Kleinman-Bylander [16] form is used. The pseudoatom energies of some selected atoms
are calculated, and the results are given in Table 2. As a comparison, the corresponding
experimental values are also given in the table. It is observed that our numerical results
agree with the experimental ones very well.
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Table 2 Pseudo-atom energies
of selected atoms (eV) This work Experiment [7]

Lithium −5.32 −5.33

Beryllium −27.22 −27.53

Sodium −5.13 −5.14

Magnesium −22.78 −22.68

Aluminum −53.17 −53.26

Fig. 5 Top left: The 1s orbital of the lithium atom; Top right: σ (sigma) bonding orbital of the lithium
hydride which consists of the 1s orbital of the hydrogen atom and the 2s orbital of the lithium atom; Bottom
left: The relation between the total energy of the lithium hydride and the bond length of Li–H; Bottom right:
The mesh with the mesh redistribution (The sliced mesh on the X-Y plane)

Example 4 The all-electron simulation of the molecule lithium hydride (LiH).
From the structure of the molecule LiH, the variation of the electron density is large

around the lithium atom and the hydrogen atom, and in the region between the lithium atom
and the hydrogen atom. The result in Fig. 5 (bottom right) shows that our mesh redistribution
technique adaptively resolves these important regions successfully.

From the molecular orbital theory, there are two orbitals in the LiH. The first one is the
1s orbital of the lithium atom. The second one is σ bonding orbital, and it consists of the
1s orbital of the hydrogen atom and the 2s orbital of the lithium orbital. Because there is no
more orbital for the σ antibonding orbital, the molecule, lithium hydride, is stable. Figure 5
(top) shows the above two orbitals, respectively.
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The relationship between the bond length of the Li–H and the total energy of the ground
state of the molecule LiH is also studied by using our solver. The result is shown in Fig. 5
(bottom left). It can be observed easily from the curve that the bond length of the Li–H is
very close to 3.0 a.u. This agrees with the experimental value 3.0107 a.u. [15] very well.

7 Concluding Remarks

We present a finite element method with an adaptive mesh redistribution technique to solve
the Kohn-Sham equation in this paper. The solver includes two main iterations. The first
one is an SCF iteration which is for the calculations of the self-consistent electron den-
sity on the current mesh. In this iteration, the Kohn-Sham equation is discretized by the
standard finite element method. In the Hamiltonian operator, the Hartree potential is ob-
tained by solving the Poisson equation with AMG method. The LDA is used to give the
exchange-correlation potential. For the external potential, both the all-electron and the lo-
cal pseudopotential are considered. The generalized eigenvalue problem is solved using the
LOBPCG method.

After the self-consistent electron density is obtained, an adaptive mesh redistribution
technique, which is based on the harmonic mapping, is proposed to optimize the mesh qual-
ity. The harmonic mapping is obtained iteratively with a given monitor function, which
depends on the gradient of the electron density. To guarantee the mesh quality, the mon-
itor function is smoothed by a method which is based on the diffusive mechanism. The
results show that the mesh quality is significantly improved with our mesh redistribution
strategy.

The numerical experiments successfully demonstrate the convergence of our solver. Fur-
thermore, the numerical accuracy and the CPU time are also studied. Results show that with
the help of the mesh redistribution technique, both the numerical accuracy of the solution
and the efficiency of the algorithm are significantly improved, compared with the fixed mesh
case.

In this paper, we mainly focus on the ground state of atoms and molecules. To obtain the
accurate ground state energy and the electron density, using a well-designed non-uniform
mesh is proven a good idea by [21, 32]. It is expected that our solver may be extended
to time-dependent density functional theory (TDDFT) case. In the TDDFT, if the external
potential is not strong, the system can be studied by the perturbative methods. Under this
situation, the perturbed system is not far away from the ground state, which means that
the well-designed, fixed mesh is still applicable. However, this may not be the case for a
very strong external potential. For example, for the simulations of the high-order harmonic
generations and the multi-photon ionizations. In these cases, the electronic structure may be
dramatically changed. This may cause difficulty for just using a fixed mesh. Consequently,
the mesh redistribution technique which is proposed in this paper may help on this issue.
With our adaptive technique, the region with the large gradient of the electron density will
always be resolved adaptively, which can effectively improve the numerical accuracy of
solutions. Some preliminary numerical results have shown the advantages of our solver on
the TDDFT calculations. The research findings will be reported on our forthcoming paper.
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