1.9 Proportional and Power Functions

* Proportionality

We say y is (directly) proportional to x if there is a nonzero constant k such that

$$
y=k x .
$$

This k is called the constant of proportionality.
We say y is inversely proportional to x if there is a nonzero constant k such that

$$
y=\frac{k}{x} .
$$

Or equivalently, if the product of x and y equals a constant k, then y is inversely proportional to x.

Example 1 The blood mass of a mammal is proportional to its body mass.
(a) Write a formula for blood mass, B, as a function of body mass, M.
(b) A rhinoceros with body mass 3000 kilograms has blood mass of 150 kilograms. Use this information to find the constant of proportionality.
(c) Estimate the blood mass of a human with body mass 70 kilograms.

Example 2 The number of animal species of a certain body length, N, is inversely proportional to the square of the body length, L. Write a formula for N as a function of L. Are there more species at large lengths or at small lengths?

Example 3 Use the following tables to determine whether $f(x)$ and $g(x)$ are proportional or inversely proportional to x ? If so, find the constant of proportionality and write a formula for the corresponding function.
(a)

x	-3	0	6	9	12
$f(x)$	60	0	-120	-180	-240

(b)

x	-2	2	6	10	14
$g(x)$	105	-105	-35	-21	-15

* Power Functions

We say $Q(x)$ is a power function of x if $Q(x)$ is proportional to a constant power of x. If k is the constant of proportionality, and if p is the power, then

$$
Q(x)=k \cdot x^{p} .
$$

Example 4 Which of the following are power functions? For those which are, write the function in the form $y=k x^{p}$, and give the coefficient k and the exponent p.
(a) $y=\frac{10}{x^{4}}$
(b) $y=6 \cdot 4^{x}$
(c) $y=9 \sqrt{x}$
(d) $y=\left(2 x^{3}\right)^{2}$
(e) $y=x^{8}+1$
(f) $y=\frac{5}{3 \sqrt{x}}$
(g) $y=\frac{x}{9}$

* Graphs of Power Functions

* Quadratic Functions and Polynomials

Sums of power functions with nonnegative integer exponents are called polynomials, which are functions of the form

$$
y=p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

Here, n is a nonnegative integer, called the degree of the polynomial, and a_{n} is a nonzero number called the leading coefficient. We call $a_{n} x^{n}$ the leading term.
If $n=2$, the polynomial is called quadratic.

Example 5 Which of the following functions are polynomial functions? For those which are, give the degree n and the leading coefficient a_{n}.
(a) $3 x^{-2}+1$
(b) $7 x^{10}+x^{2}$
(c) $2^{x}+3$
(d) $2 \sqrt{x}+x-1$
(e) $8 x^{6}+x^{2}-4 x+2-8 x^{6}$

