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Abstract. We prove the existence of invariant foliations of stable and un-

stable manifolds of a normally hyperbolic random invariant manifold. The

normally hyperbolic random invariant manifold referred to here is that which
was shown to exist in a previous paper when a deterministic dynamical sys-

tem having a normally hyperbolic invariant manifold is subjected to a small

random perturbation.

1. Introduction. This work is the second step in a program to build a geometric
singular perturbation theory under stochastic perturbations. In the first step of
the program, [15], we proved the persistence of a deterministic normally hyperbolic
invariant manifold under a random perturbation, obtaining a normally hyperbolic
random invariant manifold. We also established the existence of its random stable
and unstable manifolds. In the current paper, we prove that there exist invariant
foliations of these random stable and unstable manifolds with the base points of
the fibers on the random normally hyperbolic invariant manifold. The fibers of
the foliations vary measurably with respect to the random parameter and smoothly
with respect to the base point.
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Let (Ω,F , P ) be a probability space and (θt)t∈R be a measurable P -measure
preserving dynamical system on Ω. The system (Ω,F , P, θt) is called a metric
dynamical system. A random dynamical system (or a cocycle) on space Rn over
the metric dynamical system θt is a measurable map

φ(·, ·, ·) : R× Ω× Rn → Rn, (t, ω, x) 7→ φ(t, ω, x),

such that the map φ(t, ω) := φ(t, ω, ·) forms a cocycle over θt:

φ(0, ω) = Id, for all ω ∈ Ω,

φ(t+ s, ω) = φ(t, θsω)φ(s, ω), for all t, s ∈ R, ω ∈ Ω.

When φ(·, ω, ·) : R × Rn → Rn is continuous for each ω ∈ Ω, φ(t, ω, x) is called
a continuous random dynamical system. A continuous RDS φ is called a smooth
RDS of class Ck, k ≥ 1 if for each (t, ω) ∈ R × Ω, φ(t, ω, ·) : Rn → Rn is Ck–
smooth. More precisely, φ(t, ω, x) is k times differentiable in x and the derivatives
are continuous in (t, x) for each ω ∈ Ω.

Random dynamical systems arise in the modeling of many phenomena in physics,
biology, climatology, economics, etc. which are often subject to uncertainty or ran-
dom influences. Randomness may arise through stochastic forcing, uncertain pa-
rameters, random sources or inputs, and random boundary conditions, for instance.
One typical examples is the solution operator for a random differential equation
driven by a real noise:

dx

dt
= f(θtω, x),

where x ∈ Rd, f : Ω×Rd → Rd is a measurable function and fω(t, ·) ≡ f(θtω, ·) ∈
Lloc(R, C0,1

b ). For details see [1], chapter 2.
Another example is the solution operator for a stochastic differential equation:

dxt = f0(xt)dt+

d∑
k=1

fk(xt) ◦ dBkt ,

where x ∈ Rd, fk, 0 ≤ k ≤ d, are smooth vector fields, and Bt = (B1
t , · · · , Bdt )

is the standard d-dimensional Brownian motion defined on the probability space
(Ω,F ,P) and dBkt is the Stratonovich differential. The probability space (Ω,F ,P)
is the classic Wiener space, i.e., Ω = {ω : ω(·) ∈ C(R,Rd), ω(0) = 0} endowed
with the open compact topology and P is the Wiener measure. Define a measurable
dynamical system θt on the probability space (Ω,F ,P) by (θtω)(·) = ω(t+ ·)−ω(t)
for t > 0. It is well-known that P is invariant and ergodic under θt. For more details
about generators of random dynamical systems, see [1], chapter 2.

We consider a deterministic flow ψ(t)(x) ≡ ψ(t, x) in Rn and its randomly per-
turbed flow (cocycle) φ(t, ω)(x) ≡ φ(t, ω, x).

To state our main results, we first recall the persistence and existence results we
obtained in [15]. We proved that for a Cr flow ψ(t) with a compact, connected Cr

normally hyperbolic invariant manifold M ⊂ Rn, there exists ρ > 0 such that for
any Cr random flow φ(t, ω) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

and the normal hyperbolicity is sufficiently strong, then φ(t, ω) has a Cr normally

hyperbolic random invariant manifold M̃(ω) and has Cr stable manifold W̃s(ω)

and unstable manifold W̃u(ω) at M̃(ω).
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In this paper, with the above conditions and conclusions, we construct invariant
foliations of the random stable and unstable manifolds W̃s(ω) and W̃u(ω) of M̃(ω):

(i) Stable Foliation: The stable manifold W̃s(ω) is foliated by an invariant family

of stable leaves W̃ss(ω, x), i.e.,

W̃s(ω) = ∪x∈M̃(ω)W̃
ss(ω, x).

(ii) Unstable Foliation: The unstable manifold W̃u(ω) is foliated by an invariant

family of unstable leaves W̃uu(ω, x), i.e.,

W̃u(ω) = ∪x∈M̃(ω)W̃
uu(ω, x).

The precise statement of our results is in the next section. When the perturbed
flow φ(t, ω, x) is a deterministic one, i.e., φ(t, ω, x) is independent of ω, this result
was proved by Fenichel [10]. It was also independently proved by Hirsch, Pugh and
Shub [13].

Our results are applicable to systems of the form:

dx

dt
= F (x) + εf(θtω, x), (1)

where f is C1 and uniformly bounded in x, C0 in t for fixed ω, and measurable in
ω.

For stochastic differential equations of the form:

dxt = F (xt)dt+ εf(xt) ◦ dBt,
with the help of the Ornstein-Uhlenbeck process, we can sometimes transform the
equation into a random differential equation of form (1), say:

dx

dt
= F̄ (x) + εf̄(θtω, x).

However, the function f̄ here is generally not uniformly bounded. So our results
can not be applied directly. On the other hand, our results do provide some insight.
If one truncates the Brownian motion by any fixed large constant, the conditions
of our theorem are satisfied.

The theory of invariant foliations for deterministic dynamical systems has been
well developed. The general theory for finite-dimensional dynamical systems near
normally hyperbolic invariant manifolds was established by Fenichel [9, 10, 11] and
Hirsch, Pugh, and Shub [13]. Pesin [21] proved a stable manifold theorem which
gives an invariant foliation of the manifold. Ruelle [22] extended Pesin’s result to
semiflows with a compact invariant set in a Hilbert space. It was assumed that the
linearized time-t map is compact and injective with dense range. The results are
therefore applicable to some parabolic PDEs. Mañé [17] extended Pesin’s result
to semiflows in Banach space. A general local theory of invariant foliations for
infinite-dimensional evolutionary equations was obtain by Chow, Lin, and Lu [7],
while the global theory for infinite-dimensional deterministic dynamical systems was
established in [2, 3, 4].

In [24], Wanner established the existence of invariant foliations for finite dimen-
sional random dynamical systems in a neighborhood of a stationary solution and
used the foliations to prove a Hartman-Grobman theorem for finite-dimensional
RDSs. Li and Lu [19] proved a stable and unstable foliation theorem and used it
to establish a smooth linearization theorem (Sternberg type of theorem) for finite-
dimensional random dynamical systems. Pesin’s result was established by Liu and
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Qian [16] for finite-dimensional RDS and by Lian and Lu for infinite-dimensional
RDS. The local theory of invariant foliations for stochastic PDEs was obtained by
Lu and Schmalfuss [20]. The invariant foliations we present here are extensions of
Fenichel’s results to finite-dimensional random dynamical systems. It will be used in
a forthcoming paper to establish a random Geometric Singular Perturbation Theory
and to study slow-fast systems with random perturbations. Another main applica-
tion of our result concerns the normal form near a compact slow manifold, which
is a key step in proving a random version of the Inclination Lemma, also called the
‘Exchange Lemma’ [14]. We point out that there are two major difficulties: one
is the lack of a deterministic Cartesian coordinate system in which the invariant
foliation is constructed, the other is the measurability of the invariant foliation.

We organize this paper as follows: in Section 2 we state our main theorem; in
Section 3 we prove the existence of the invariant foliation; in Section 4 we prove
the smoothness and measurability of the invariant foliation; in Section 5 we prove
the asymptotic property of the invariant foliation. Then in the last section, we
discuss the extensions of our results to overflowing invariant and inflowing invariant
manifolds.

2. Main result. In this section, we first recall the concept of normally hyperbolic
random invariant manifold and the persistence and existence results which are given
in [15]. Then we state our main results.

Let (Ω,F , P, θt) be a metric dynamical system and let X be a separable Banach
space. We consider a smooth random dynamical system φ(t, ω, x) on X over θt.

A multifunction M = (M(ω))ω∈Ω of nonempty closed sets M(ω), ω ∈ Ω, con-
tained in X is called a random set if

ω 7→ inf
y∈M(ω)

||x− y||

is a random variable for any x ∈ X. When the random setM is a manifold, we call
it a random manifold.

A random manifoldM(ω) is called a random invariant manifold for a random
dynamical system φ(t, ω, x) if

φ(t, ω,M(ω)) =M(θtω) for all t ∈ R, ω ∈ Ω.

Notation. By D we mean the derivative with respect to the spatial variable, while
by D1, D2, and D3 we mean the derivatives with respect to the first, second, and
third variables, respectively. For instance, Dφ(t, ω)(x) ≡ Dφ(t, ω, x) = Dxφ(t, ω, x),
while D1g(x, y, z) = Dxg, D2g(x, y, z) = Dyg, and D3g(x, y, z) = Dzg. Moreover,
for M a random manifold, by (ω, x) ∈ Ω×M we mean x ∈M(ω).

Definition 2.1. A random invariant manifold M is said to be normally hyper-
bolic if for almost every ω ∈ Ω and any x ∈M(ω), there exists a splitting which is
C0 in x and measurable:

X = Eu(ω, x)⊕ Ec(ω, x)⊕ Es(ω, x)

of closed subspaces with associated projections Πu(ω, x), Πc(ω, x), and Πs(ω, x)
such that

(i) The splitting is invariant:

Dφ(t, ω)(x)Ei(ω, x) = Ei(θtω, φ(t, ω)(x)), for i = u, c,
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and

Dφ(t, ω)(x)Es(ω, x) ⊂ Es(θtω, φ(t, ω)(x)).

(ii) Dφ(t, ω)(x)
∣∣
Ei(ω,x)

: Ei(ω, x) → Ei(θtω, φ(t, ω)(x)) is an isomorphism for

i = u, c, and Ec(ω, x) is the tangent space of M(ω) at x.
(iii) There are (θ, φ)-invariant random variables ᾱ, β̄ :M→ (0,∞), ᾱ < β̄, and a

tempered random variable K(ω, x) :M→ [1,∞) such that

||Dφ(t, ω)(x)Πs(ω, x)|| ≤ K(ω, x)e−β̄(ω,x)t for t ≥ 0, (2)

||Dφ(t, ω)(x)Πu(ω, x)|| ≤ K(ω, x)eβ̄(ω,x)t for t ≤ 0, (3)

||Dφ(t, ω)(x)Πc(ω, x)|| ≤ K(ω, x)eᾱ(ω,x)|t| for −∞ < t <∞. (4)

The definition we have here is an extension of normal hyperbolicity for deter-
ministic dynamical systems. Note that in the case of X being finite-dimensional,

Dφ(t, ω)(x)
∣∣
Es(ω,x)

: Es(ω, x)→ Es(θtω, φ(t, ω)(x))

is also an isomorphism.
We consider a deterministic flow ψ(t)(x) ≡ ψ(t, x) in Rn and its randomly per-

turbed (cocycle) counterpart φ(t, ω)(x) ≡ φ(t, ω, x). To state our main theorem, we
recall the following theorem we obtained in [15].

Theorem 2.2. Assume that ψ(t) is a Cr flow, r ≥ 1, which has a compact, con-
nected Cr normally hyperbolic invariant manifold M ⊂ Rn. Let the positive expo-
nents related to the normal hyperbolicity be ᾱ < β̄ in (2.1)-(2.3), which in this case
are constant and deterministic. Then there exists ρ > 0 such that for any random
C1 flow φ(t, ω) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for all t ∈ [0, 1], ω ∈ Ω, (5)

then

(i) Persistence: φ(t, ω) has a C1 normally hyperbolic random invariant manifold

M̃(ω) in a small neighborhood of M,

(ii) Smoothness: If ᾱ < rβ̄ and φ(t, ω) is Cr, then M̃(ω) is a Cr manifold diffeo-
morphic to M for each ω ∈ Ω,

(iii) Existence of Stable Manifolds: M̃(ω) has a stable manifold W̃s(ω) under
φ(t, ω),

(iv) Existence of Unstable Manifolds: M̃(ω) has an unstable manifold W̃u(ω) un-
der φ(t, ω).

Our first result is on the foliation of W̃u(ω) into unstable fibers based on M̃(ω).

Theorem 2.3. Assume the conditions of Theorem 2.2 hold. Then there exists a
unique Cr−1 in x family of Cr submanifolds

{
W̃uu(ω, x) : ω ∈ Ω, x ∈ M̃(ω)

}
of

W̃u(ω) satisfying:

(1) For each (ω, x) ∈ Ω×M̃,M̃(ω)∩W̃uu(ω, x) = {x}, TxW̃uu(ω, x) = Eu(ω, x)

and W̃uu(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃uu(ω, x1) ∩ W̃uu(ω, x2) = ∅ and

W̃u(ω) = ∪x∈M̃(ω)W̃
uu(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃uu(ω, x)

)
⊂ W̃uu(θtω, φ(t, ω)x).
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(4) For y ∈ W̃uu(ω, x) and x 6= x1 ∈ M̃(ω) with |φ(t, ω)(x1)− φ(t, ω)(x)| → 0 as
t→ −∞, we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ −∞.
(5) For y1, y2 ∈ W̃uu(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t →
−∞.

(6) W̃uu(θtω, x) is C0 in t for any fixed (ω, x).

The next result is on the foliation of W̃s(ω) into stable fibers based on M̃(ω).

Theorem 2.4. Assume the conditions of Theorem 2.2 hold. Then, there exists a
unique Cr−1 in x family of Cr submanifolds

{
W̃ss(ω, x) : ω ∈ Ω, x ∈ M̃(ω)

}
of

W̃s(ω) satisfying:

(1) For each (ω, x) ∈ Ω× M̃,M̃(ω) ∩ W̃ss(ω, x) = {x}, TxW̃ss(ω, x) = Es(ω, x)

and W̃ss(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃ss(ω, x1) ∩ W̃ss(ω, x2) = ∅ and

W̃s(ω) = ∪x∈M̃(ω)W̃
ss(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃ss(ω, x)

)
⊂ W̃ss(θtω, φ(t, ω)x).

(4) For y ∈ W̃ss(ω, x) and x 6= x1 ∈ M̃(ω) with |φ(t, ω)(x1)− φ(t, ω)(x)| → 0 as
t→∞, we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ +∞.
(5) For y1, y2 ∈ W̃ss(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t →

+∞.
(6) W̃ss(θtω, x) is C0 in t for any fixed (ω, x).

To prove the theorems, some useful properties proved in [15] will be used. Let

Rn = Eu(ω, x)⊕ Ec(ω, x)⊕ Es(ω, x)

be the splitting corresponding to the normal hyperbolicity of M̃(ω).

Proposition 1. For ρ sufficiently small, the following holds

(i) The splitting is invariant:

Dφ(t, ω)(x)Ei(ω, x) = Ei(θtω, φ(t, ω)(x)), for i = u, c, s,

Dφ(t, ω)(x)
∣∣
Ei(ω,x)

: Ei(ω, x)→ Ei(θtω, φ(t, ω)(x)) is an isomorphism for i =

u, c, s. Ec(ω, x) is the tangent space of M(ω) at x. Ei(ω, x) are measurable
in (ω, x) and Cr−1 in x.

(ii) (1) There exist positive constants a < 1 and c1 such that:

||Π̃sDφ(t, θ−tω)φ(−t, ω)(x)|Ẽs(θ−tω)|| < c1a
t

for all x ∈ M̃(ω) and t ≥ 0,

||Π̃uDφ(t, θ−tω)φ(−t, ω)(x)|Ẽu(θ−tω)|| < c1a
t

for all x ∈ M̃(ω) and t ≤ 0,
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(2) If ᾱ < rβ̄, there exist c2 > 0 and r′ > r such that

||Π̃sDφ(t, θ−tω)φ(−t, ω)(x)|Ẽs(θ−tω)|| ||D(φ|M̃(ω))(−t, ω)(x)||r
′
< c2

for all x ∈ M̃(ω) and t ≥ 0,

||Π̃uDφ(t, θ−tω)φ(−t, ω)(x)|Ẽu(θ−tω)|| ||D(φ|M̃(ω))(−t, ω)(x)||r
′
< c2

for all x ∈ M̃(ω) and t ≤ 0,
(3) If ᾱ < rβ̄, there exist c3 > 0 and r′ > r such that

||Π̃sDφ(t, θ−tω)φ(−t, ω)(x)|Ẽs(θ−tω)|| ||D(φ|M̃(ω))(−t, ω)(x)||

||D(φ|M̃(θ−tω))(t, θ
−tω)φ(−t, ω)(x)||r

′−1 < c3

for all x ∈ M̃(ω) and t ≥ 0,

||Π̃uDφ(t, θ−tω)φ(−t, ω)(x)|Ẽu(θ−tω)|| ||D(φ|M̃(ω))(−t, ω)(x)||

||D(φ|M̃(θ−tω))(t, θ
−tω)φ(−t, ω)(x)||r

′−1 < c3

for all x ∈ M̃(ω) and t ≤ 0.

3. Existence of the invariant foliation. In this section, we prove the existence of
an invariant foliation of the random unstable manifold. We construct the invariant
foliation in local coordinates on W̃u(ω). The basic idea is due to Hadamard [12] and
involves a graph transform. First, we take a set of Lipschitz graphs in local charts,
which pass through different points on the random invariant manifold M̃(ω) and are

contained in the random unstable manifold W̃u(ω). Then, we consider the image
of these graphs under φ(t, ω) for some large fixed t > 0. We show that this random
graph transform is a contraction on the space of such sets of graphs and the resulting
fixed set of graphs gives us the invariant foliation of the random unstable manifold.
By reversing time, we get an invariant foliation of the random stable manifold.
The technical hurdle is the construction of local charts. We need the local charts on
W̃u(ω) for different ω ∈ Ω, while at the same time we need those charts to be related
to each other for different ω. We overcome this difficulty by using the fact that the
random unstable manifold W̃u(ω) and deterministic unstable manifold Wu are Cr

diffeomorphic and C1-close. Thus, we can define local coordinates on Wu and then
induce local coordinates on W̃u(ω). We denote by i(ω) the Cr diffeomorphism from

Wu to W̃u(ω). For any fixed ω, i(ω) is Cr close to the identity map Id.

Notation. We have used x and y for points on manifolds in Rn. From now on, we
will use m for points onM or M̃(ω) and use x with superscript u, s, cu, cs for normal
coordinates. It will be made clear from the context. In this and those sections after,
there will be all kinds of random bundles. For any random bundle E = E(ω,m),
we use E(εi) to mean the subset {ν ∈ E(ω,m) for some (ω,m), |ν| < εi}.

To define local coordinates on Wu, we follow Fenichel’s approach, see [10]. Let
exp be the exponential map. For each m ∈ M and ν ∈ TWu|M, let expm(ν) be
the end point of the geodesic with initial point m and initial tangent vector ν. We
borrow the following lemma from [10]:

Lemma 3.1. There exists 0 < ε1 such that for each m ∈M,

expm : {ν ∈ TmWu|M : |ν| < ε1} → Wu
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is a diffeomorphism onto its range and its range lies in Wu. Moreover, the deriv-
ative of the exponential map Dexpm(0) is the identity map and ||D expm(ν)|| and
||[Dexpm(ν)]−1|| are arbitrarily close to 1 uniformly for m ∈ M and |ν| < ε1 if ε1
is small enough.

Fix ε1 small enough such that the conclusions of Lemma 3.1 hold. Define

Γ(ω) : TW̃u(ω)|M̃(ω) 7→ W̃
u(ω)

by

Γ(ω) := i(ω) ◦ exp ◦ [D i(ω)]−1.

This gives us local coordinates on W̃u(ω) near M̃(ω). Taking sufficiently small ρ,

by the uniform C1-closeness of ψ(t) to φ(t, ω), Wu to W̃u(ω) (see Theorem 2.2 for
what we mean by uniform), and Lemma 3.1, there exists 0 < ε2 < ε1 such that Γ(ω)

is well defined on (TW̃u(ω)|M̃(ω))(ε2).

By Proposition 1, if K is sufficiently large, we have

||Dφ(−K,ω)(m)|Eu(ω,m)|| <
1

4
,

||D((φ|M̃(θ−Kω))(K, θ
−Kω))φ(−K,ω)(m)||k||Dφ(−K,ω)(m)|Eu(ω,m)|| <

1

4
,

for any 0 ≤ k ≤ r. (Note that the first inequality is in a different form, which does
not matter because Proposition 1 holds for arbitrary ω. Also note that for fixed K
and sufficiently small ρ, φ(±K,ω) is uniformly C1 close to ψ(±K) by (5) and the
cocycle property.) Fixing this K, there exists 0 < ε3 < ε2 such that

φ(K,ω){Γ(ω)((TW̃u(ω)|M̃(ω))(ε3))} ⊂ Γ(θKω)((TW̃u(θKω)|M̃(θKω))(ε2)).

For any ω ∈ Ω and m ∈ M̃(ω), let ξc, ξu, xc, xu denote elements of

TM̃(θ−Kω, φ(−K,ω)(m)), Eu(θ−Kω, φ(−K,ω)(m)), TM̃(ω,m) and Eu(ω,m)

respectively. We use (ξc, ξu) and (xc, xu) as coordinates near φ(−K,ω)(m) and m,
respectively. The map φ(K, θ−Kω) has the form

(ξc, ξu) 7→ (xc, xu) = (gc(ξc, ξu), gu(ξc, ξu)),

defined for |ξ| := |ξc|+ |ξu| < ε3. In terms of gc and gu, the above inequalities read

||[D2g
u(0, 0)]−1|| = ||Dφ(−K,ω)(m)|Eu(ω,m)|| <

1

4
,

||[D2g
u(0, 0)]−1||||D1g

c(0, 0)||k < 1

4
, for 0 ≤ k ≤ r.

We also have from the invariance of M̃(ω) and Ei(ω), i = u, c, the following

gu(0, 0) = 0, gc(0, 0) = 0, D2g
c(0, 0) = 0.

Note that gc and gu depend on ξc, ξu as well as on m and ω. And there exists Q
so large that all first partial derivatives of gc and gu along with their inverses are
bounded by Q.

By the compactness of M, the C1-closeness of ψ(K) to φ(K,ω) and W̃u(ω) to
Wu, uniformly in ω, for any constants β > 0 and γ > 0 there exists 0 < ε4 < ε3
such that for all ω ∈ Ω and m ∈ M̃(ω), if |ξc|, |ξ̄c|, |ξu|, |ξ̄u| ≤ ε4, then

||[D2g
u(ξc, ξu)]−1|| < 1

3
, (6)
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||[D2g
u(ξc, ξu)]−1||||D1g

c(ξ̄c, ξ̄u)||k < 1

3
, for 0 ≤ k ≤ r, (7)

||gu(ξc, ξu)|| < γ, ||gc(ξc, ξu)|| < γ, ||D2g
c(ξc, ξu)|| < γ, (8)

|gu(ξc, ξu)− gu(ξc, ξ̄u)| ≥ [||[D2g
u(ξc, ξu)]−1||−1 − β] |ξu − ξ̄u|, (9)

|gc(ξc, ξu)− gc(ξ̄c, ξu)| ≤ [||D1g
c(ξc, ξu)||+ β] |ξc − ξ̄c|. (10)

For β sufficiently small, there exists a small positive δ0 such that if

|ξc − ξ̄c| ≤ δ0|ξu − ξ̄u|,
then

|gu(ξc, ξu)− gu(ξ̄c, ξ̄u)| ≥|gu(ξc, ξu)− gu(ξc, ξ̄u)| − |gu(ξc, ξ̄u)− gu(ξ̄c, ξ̄u)|
≥[||[D2g

u(ξc, ξu)]−1||−1 − β] |ξu − ξ̄u| −Q|ξc − ξ̄c|
≥(3− β −Qδ0) |ξu − ξ̄u| > 2|ξu − ξ̄u|.

(11)

Let S denote the set of families of continuous maps

h = {h(ω,m) : ω ∈ Ω, m ∈ M̃(ω), h(ω,m)(0) = 0},

where h(ω,m)(·) : Eu(ω,m)(ε4) → TM̃(ω,m)(ε4) is also continuous in the base
point m.

For h ∈ S, define

Lip h := sup
ω∈Ω

max
m∈M̃(ω)

sup
xu,x̄u∈Eu(ω,m)(ε4),xu 6=x̄u

|h(ω,m)(xu)− h(ω,m)(x̄u)|
|xu − x̄u|

,

if it exists. Define
Sδ := {h ∈ S : Lip h ≤ δ},

and a distance d on Sδ:

d(h, h′) := sup{ |h(m,ω)(xu)− h′(m,ω)(xu)|
|xu|

: ω ∈ Ω,

m ∈ M̃(ω), 0 6= xu ∈ Eu(m,ω)(ε4)}.
Note that set Sδ is nonempty since the trivial family is obviously in Sδ and that the
above supremum exists because each term is bounded by 2δ. Under this metric, Sδ
is complete. Moreover, convergence in Sδ implies uniform convergence.

We will construct an h ∈ Sδ such that W̃uu(ω,m) is the graph of h(ω,m).

Proposition 2. There exists a unique point in Sδ, which we denote by h, such that
for any t > K, h satisfies the overflowing invariance condition:

φ(−t, ω)(graph(h(ω,m))) ⊂ graph(h(θ−tω, φ(−t, ω)(m))).

Proof. We first note that in local coordinates the above overflowing invariance con-
dition is equivalent to the nonlinear functional equation:

h(ω,m)(gu(h(θ−Kω, φ(−K,ω)(m))(ξu)), ξu) = gc(h(θ−Kω, φ(−K,ω)(m))(ξu)), ξu).

We will show that this functional equation has a unique solution in Sδ.
Define a map G on Sδ → S as follows. For h ∈ Sδ, ω ∈ Ω, m ∈ M̃(ω),

(Gh)(m,ω)(xu) = gc(h(θ−Kω,m′)(ξu), ξu),

where
xu = gu(h(θ−Kω,m′)(ξu), ξu),

m′ = φ(−K,ω)(m).

The next lemma justifies this definition.
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Lemma 3.2. If δ and ε4 are sufficiently small, for each h ∈ Sδ, ω ∈ Ω and m ∈
M̃(ω), the map ξu 7→ gu(h(θ−Kω,m′)(ξu), ξu) is one-to-one on Eu(θ−Kω,m′)(ε4)
and Eu(ω,m)(ε4) is contained in its range.

Proof. By (11) we conclude that gu is one-to-one. Then gu is a continuous injection
from an open subset of Euclidean space to Euclidean space of the same dimension.
By invariance of domain, the range of gu is open. Since gu(0, 0) = 0, there exists
c > 0 such that B(0, c) is contained in the range of gu. Again from (11) we have
that the pre-image of B(0, c) is contained in B(0, c/2) and that B(0, ε4) is contained
in the range of gu.

Lemma 3.3. If δ and ε4 are sufficiently small, G maps Sδ into Sδ.

Proof. It is obvious that (Gh)(ω,m)(0) = 0. We only need to estimate the Lipschitz
constant of Gh. Let xu, x̄u ∈ Eu(ω,m)(ε) and define ξu, ξ̄u by

xu = gu(h(θ−Kω,m′)(ξu), ξu),

x̄u = gu(h(θ−Kω,m′)(ξ̄u), ξ̄u),

which are well defined by lemma 3.2. Then

|x̄u − xu| = |gu(h(θ−Kω,m′)(ξ̄u), ξ̄u)− gu(h(θ−Kω,m′)(ξu), ξu)|
≥ |gu(h(θ−Kω,m′)(ξu), ξ̄u)− gu(h(θ−Kω,m′)(ξu), ξu)|

−|gu(h(θ−Kω,m′)(ξ̄u), ξ̄u)− gu(h(θ−Kω,m′)(ξu), ξ̄u)|
≥ {||[D2g

u(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β}|ξ̄u − ξu|
−Q|h(θ−Kω,m′)(ξ̄u)− h(θ−Kω,m′)(ξu)|

≥ {||[D2g
u(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β −Qδ}|ξ̄u − ξu|.

Also, we have

|(Gh)(ω,m)(x̄u)− (Gh)(ω,m)(xu)|
= |gc(h(θ−Kω,m′)(ξ̄u), ξ̄u)− gc(h(θ−Kω,m′)(ξu), ξu)|
≤ [||D1g

c(h(θ−Kω,m′)(ξu), ξu)||+ β]|h(θ−Kω,m′)(ξ̄u)− h(θ−Kω,m′)(ξu)|
+γ|ξ̄u − ξu|

≤ {[||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β]δ + γ}|ξ̄u − ξu|.

So by (6) and (7), for δ small enough, choosing ε4 and γ sufficiently small, we have
Lip Gh < δ. (Note that γ could be arbitrarily small by taking sufficiently small
ε4.)

Lemma 3.4. If δ and ε4 are sufficiently small, G is a contraction on Sδ.

Proof. Let h, ĥ ∈ Sδ and xu ∈ Eu(ω,m)(ε4). Then, there exist

ξu, ξ̂u ∈ Eu(θ−Kω,m′)(ε4)
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such that xu = gu(h(θ−Kω,m′)(ξu), ξu) = gu(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u). By (11), we
have

2|ξu − ξ̂u| ≤ |gu(h(θ−Kω,m′)(ξu), ξu)− gu(h(θ−Kω,m′)(ξu), ξ̂u)|
= |gu(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u)− gu(h(θ−Kω,m′)(ξu), ξ̂u)|
≤ Q|ĥ(θ−Kω,m′)(ξ̂u)− h(θ−Kω,m′)(ξu)|
≤ Q|ĥ(θ−Kω,m′)(ξ̂u)− ĥ(θ−Kω,m′)(ξu)|

+Q|ĥ(θ−Kω,m′)(ξu)− h(θ−Kω,m′)(ξu)|
≤ Qδ|ξ̂u − ξu|+Qd(ĥ, h)|ξu|.

Choosing δ such that δ < 1
Q , we have

|ξu − ξ̂u| ≤ Qd(ĥ, h)|ξu|.
We also have

|(Gh)(ω,m)(xu)− (Gĥ)(ω,m)(xu)|
= |gc(h(θ−Kω,m′)(ξu), ξu)− gc(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u)|
≤ |gc(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u)− gc(ĥ(θ−Kω,m′)(ξu), ξu)|

+|gc(ĥ(θ−Kω,m′)(ξu), ξu)− gc(h(θ−Kω,m′)(ξu), ξu)|
≤ [(Q+ β)δ + γ]|ξu − ξ̂u|+ [||D1g

c(h(θ−Kω,m′)(ξu), ξu)||+ β]d(h, ĥ)|ξu|
≤ (Q+ β + γ/δ)δ Qd(h, ĥ)|ξu|+ [||D1g

c(h(θ−Kω,m′)(ξu), ξu)||+ β]d(h, ĥ)|ξu|
= [||D1g

c(h(θ−Kω,m′)(ξu), ξu)||+ β + (Q+ β + γ/δ)δ Q]d(h, ĥ)|ξu|

and

|xu| = |gu(h(θ−Kω,m′)(ξu), ξu)|
= |gu(h(θ−Kω,m′)(ξu), ξu)− gu(0, 0)|
≥ [||[D2g

u(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β −Qδ]|ξu|.
Hence,

|(Gh)(ω,m)(xu)− (Gĥ)(ω,m)(xu)|
|xu|

≤ ||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β + (Q+ β + γ/δ)δ Q

||D2gu(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β −Qδ
d(h, ĥ).

Choosing δ and ε sufficiently small and using (7) the factor preceding d(h, ĥ) can
be bounded by a constant λ < 1. Thus, we have

d(Gh,Gĥ) ≤ λd(h, ĥ).

This completes the proof of the lemma.

By the contraction principle, there exists a unique fixed point h of G in Sδ. h
satisfies:

φ(−K,ω)(graph(h(ω,m))) ⊂ graph(h(θ−Kω, φ(−K,ω)(m))).

For any fixed t > K we can define G1 just as we defined G for K. We know that
G and G1 commute. So we have

GG1h = G1Gh = G1h.
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By the uniqueness of G we conclude

G1h = h.

Or equivalently

φ(−t, ω)(graph(h(ω,m))) ⊂ graph(h(θ−tω, φ(−t, ω)(m))).

This completes the proof of Proposition 2.

4. Smoothness and measurability. In this section, we prove two types of smoo-
thness of the invariant foliation: the smoothness of each fiber and the smoothness
with respect to the base point. We also prove that the fiber changes measurably
with respect to ω and the base point jointly.

The strategy for proving smoothness is the same as in [15], which is the same
as in [9, 10, 11]. We first differentiate the equation of the fixed point formally
to determine the functional equation, which must be satisfied by the derivatives.
Second, we show the functional equation has a unique solution in some space. Last,
we show that this unique solution is indeed the derivative. The idea of proving
measurability of the invariant foliation is to prove it is the limit of a sequence of
measurable foliations.

Notation. We have used D for spatial derivatives. In this section, there may be
two kinds of spatial variables, h(ω,m)(xu) for instance. Dkh(ω,m)(xu) will mean
the k-th order derivative with respect to xu. We have also used Di for the derivative
of the i-th variable. In this section, with the explicit dependence on ω of functions,
h(ω)(xcc, xu) for instance, D1h(ω)(xcc, xu) will mean the derivative with respect to
xcc.

We split this section into three subsections:

4.1. Smoothness of the fiber. By proving the following proposition, we show
that each fiber of the invariant foliation is Cr.

Proposition 3. For any ω ∈ Ω and m ∈ M̃(ω), h(m,ω)(xu) is a Cr function of
xu and all derivatives Dkh(m,ω)(xu), 1 ≤ k ≤ r are continuous in the base point
m.

Proof. First, we have

h(ω,m)(gu(h(θ−Kω,m′)(ξu), ξu)) = gc(h(θ−Kω,m′)(ξu), ξu). (12)

Taking the derivative formally on both sides of the above equation, we have

Dh(ω,m)(xu)[D1g
u(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu)

+D2g
u(h(θ−Kω,m′)(ξu), ξu)]

= D1g
c(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu) +D2g

c(h(θ−Kω,m′)(ξu), ξu).



INVARIANT FOLIATION FOR RDS 3651

Thus, if h(ω,m) is differentiable, then we must have

Dh(ω,m)(xu)

= [D1g
c(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu)

+D2g
c(h(θ−Kω,m′)(ξu), ξu)] ·

[D1g
u(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu)

+D2g
u(h(θ−Kω,m′)(ξu), ξu)]−1,

where

xu = gu(h(θ−Kω,m′)(ξu), ξu), and m′ = φ(−K,ω)(m).

The candidate for Dh, which we denote by v, has the following form:

v = {v(m,ω) : ω ∈ Ω,m ∈ M̃(ω)},

where for each ω ∈ Ω,m ∈ M̃(ω), v(m,ω)(·) is a continuous map from

Eu(m,ω)(ε4)→ L(Eu(m,ω), TM̃(ω,m)),

or equivalently,

v(m,ω) ∈ C0(Eu(m,ω)(ε4), L(Eu(m,ω), TM̃(ω,m))).

Let TS be the space of all such v. Define the norm || · || on TS by

||v|| = sup
ω,m

max
xu∈Eu(m,ω)

||v(m,ω)(xu)||.

Under this norm, TS is complete. We want to find an element v ∈ TS such that

v(ω,m)(xu)

=[D1g
c(h(θ−Kω,m′)(ξu), ξu)v(θ−Kω,m′)(ξu

+D2g
c(h(θ−Kω,m′)(ξu), ξu)]·

[D1g
u(h(θ−Kω,m′)(ξu), ξu)v(θ−Kω,m′)(ξu)

+D2g
u(h(θ−Kω,m′)(ξu), ξu)]−1,

(13)

where

xu = gu(h(θ−Kω,m′)(ξu), ξu), and m′ = φ(−K,ω)(m).

We prove the functional equation (13) for v has a unique solution in TS.
Define a sequence {vn} ⊂ TS by induction: Let v0 ≡ 0 and

vn+1(ω,m)(xu)

=[D1g
c(h(θ−Kω,m′)(ξu), ξu)vn(θ−Kω,m′)(ξu)

+D2g
c(h(θ−Kω,m′)(ξu), ξu)]

[D1g
u(h(θ−Kω,m′)(ξu), ξu)vn(θ−Kω,m′)(ξu)

+D2g
u(h(θ−Kω,m′)(ξu), ξu)]−1,

(14)

where

xu = gu(h(θ−Kω,m′)(ξu), ξu), and m′ = φ(−K,ω)(m).

We have the following two lemmas, the proofs of which follow exactly the same
strategy as in Section 5 of [15].

Lemma 4.1. ||vn|| < δ for all n.
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Lemma 4.2. ||vn+1 − vn|| ≤ λ||vn − vn−1|| for some 0 < λ < 1.

Hence, vn converge to the unique solution v of equation (13). By the uniform
convergence, v(m,ω)(xu) is continuous in xu and m.

The next lemma states that Proposition 3 holds for the case k = 1.

Lemma 4.3. Dh(m,ω)(xu) = v(m,ω)(xu).

Proof. For a fixed ω ∈ Ω, we define an increasing function %ω : (0, 1)→ R by,

%ω(a)

= max
m∈M̃(ω)

sup
xu,xu′∈Eu(m,ω),0<||xu−xu′||<a

||h(m,ω)(xu′)− h(m,ω)(xu)− v(m,ω)(xu)(xu′ − xu)||
||xu′ − xu||

.

Note that %ω is bounded by 2δ.
We want to show %ω(a)→ 0 as a→ 0. To prove this, we claim

Claim. %ω(a) satisfies

%ω(a) ≤ α%ω′(κa) + r(ω′, a)

for small a, where 0 ≤ α < 1, 1 < κ, ω′ = θ−Kω, and r(θ−Kω, a) is a decreasing
function in a, approaching zero as a→ 0 uniformly with respect to ω ∈ Ω.

The proof of the claim is exactly the same as in Proposition 5.2 of [15].
Replace successively a by aκ−1, aκ−2, · · · , aκ−n and ω by θKω, θ2Kω, · · · , θnKω,

respectively, weight the terms with 1, 1
α , · · · ,

1
αn−1 , and add them together to get:

1

αn−1
%θnKω(aκ−n) ≤ α%ω(a) + (1 +

1

α
+ · · ·+ 1

αn−1
) sup
ω

max
0≤t≤a

r(ω, t).

Then since %ω(a) ≤ 2δ, we have

%θnKω(aκ−n) ≤ 2αnδ +
1

1− α
sup
ω

max
0≤t≤a

r(ω, t).

Since ω is arbitrary, we get

%ω(aκ−n) ≤ 2αnδ +
1

1− α
sup
ω

max
0≤t≤a

r(ω, t).

It follows that %ω(a)→ 0 as a→ 0.
So h(m,ω)(xu) is C1 in xu and Dh(m,ω)(xu) is continuous in the base point

m.

Lemma 4.4. Dk−1v(m,ω)(xu) exists for 2 ≤ k ≤ r and is continuous in xu and
m. Moreover Dkh(m,ω)(xu) = Dk−1v(m,ω)(xu).

Proof. By induction, it is easy to see Dkvn is a Cauchy sequence in the corre-
sponding space, which implies the uniform convergence of Dkvn(m,ω). Since vn

converges to v, we have that Dkv(m,ω)(xu) exists and equals the uniform limit of
Dkvn(m,ω)(xu)

Combining Lemma 4.3 and Lemma 4.4 gives Proposition 3.

Proposition 4. The graph of h(ω,m) is tangent to Eu(ω,m) at m.
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Proof. It is equivalent to show Dh(ω,m)(xu)|xu=0 = 0.
Since

|h(ω,m)(xu)− h(ω,m)(x̄u)| ≤ δ|xu − x̄u|,
we have

|Dh(ω,m)(xu)| ≤ δ
for all |xu| < ε4.

Recall that, in proving that the graph transform is a contraction in Section 3,
for each small δ, we let ε4 be small enough to ensure the existence. If we let δ → 0,
it follows that ε4 → 0. So by uniqueness of the fibers, the above inequality always
holds for xu = 0. Equivalently,

|Dh(ω,m)(0)| ≤ δ
for arbitrary δ > 0. It follows that Dh(ω,m)(0) = 0.

4.2. Smoothness with respect to the base point. In this subsection, we prove
the fiber changes Cr−1 smoothly as the base point varies on the center manifold.
We will introduce a new coordinate system and use the same idea as in the last
subsection.

Proposition 5. h(ω,m) is Cr−1 in m for m ∈ M̃.

Proof. We need to prove the random C0 manifold Σ = {Σ(ω) : ω ∈ Ω} defined by

Σ(ω) = {(m, p)|m ∈ M̃(ω), p ∈ W̃uu(ω,m)}

is a Cr−1 submanifold of M̃ × W̃u = {M̃(ω)× W̃u(ω) : ω ∈ Ω}.
Let M̃∗ = {M̃∗(ω) : ω ∈ Ω} be the diagonal embedding of M̃ to M̃ × W̃u:

M̃∗(ω) := {(m,m)|m ∈ M̃(ω)}.

Then, M̃∗ is a compact connected Cr random invariant manifold in Rn×Rn under
(φ, φ).

We embed TW̃u(ω) into T (M̃(ω) × W̃u(ω))|M̃∗(ω) as follows. Let γ(t) be a

curve in W̃u(ω) such that γ(0) = m ∈ M̃(ω). Then γ∗(t) := (m, γ(t)) is a curve

in M̃(ω) × W̃u(ω) such that γ∗(0) = (m,m). The mapping γ → γ∗ induces an

injection TW̃u(ω)|M̃(ω) → T (M̃(ω)× W̃u(ω))|M̃∗(ω).

Let Eu∗ (ω) and Ec∗(ω) be the image of Eu(ω) and TM̃(ω) under this injection,
respectively. Actually, only vectors whose norms are smaller than ε4 are embedded.
However, this is not important. We will consider only vectors with small norms.
Then, we get the following splitting:

T (M̃(ω)× W̃u(ω))|M̃∗(ω) = TM̃∗(ω)⊕ Eu∗ (ω)⊕ Ec∗(ω).

The embedding we have here is based on [11].
To prove Proposition 5, we need local coordinates and partitions of unity along

the lines of those used in [15]. We first present the proof in the case that M̃(ω)×
W̃u(ω) is a subset of a torus and Eu∗ (ω) and Ec∗(ω) are trivial bundles. In other
words, we have a global coordinate system. Later, we explain how this proof is to
be modified to fit the general case.

Denote the global coordinates by (xcc, xu, xc) ∈ TM̃∗(ω)×Eu∗ (ω)(ε5)×Ec∗(ω)(ε5).
We may choose small ε5 as we did for ε3, such that the induced random flow
φ∗(K,ω) := (φ(K,ω), φ(K,ω)) on M̃(ω)× W̃u(ω) has the form:

j(xcc, xu, xc) = (jcc(xcc, xu, xc), ju(xcc, xu, xc), jc(xcc, xu, xc)). (15)
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From Proposition 1 we have

||[D2j
u(xcc, 0, 0)]−1|| < 1

4
, (16)

||[D2j
u(xcc, 0, 0)]−1||||D3j

c(xcc, 0, 0)||k < 1

4
, (17)

||[D1j
cc(xcc, 0, 0)]−1||k−1||[D2j

u(xcc, 0, 0)]−1||||D3j
c(xcc, 0, 0)|| < 1

4
(18)

for 1 ≤ k ≤ r. We can choose ε5 even smaller as for the case of ε4, such that

||[D2j
u(xcc, xu, xc)]−1|| < 1

3
, (19)

||[D2j
u(xcc, xu, xc)]−1||||D3j

c(xcc, xu, xc)||k < 1

3
, (20)

||[D1j
cc(xcc, xu, xc)]−1||k−1||[D2j

u(xcc, xu, xc)]−1||||D3j
c(xcc, xu, xc)|| < 1

3
. (21)

From the invariance of M̃∗(ω), we have

ju(xcc, 0, 0) = 0, jc(xcc, 0, 0) = 0, (22)

and so
D1j

u(xcc, 0, 0) = 0, D1j
c(xcc, 0, 0) = 0. (23)

By the invariance of Eu∗ (ω) we get

D2j
c(xcc, 0, 0) = 0 (24)

and
D1D2j

c(xcc, 0, 0) = 0. (25)

Hence, for any small γ, choosing ε5 small enough we have

|ju(xcc, xu, xc)| < γ, |jc(xcc, xu, xc)| < γ, (26)

||D1j
u(xcc, xu, xc)|| < γ, ||D1j

c(xcc, xu, xc)|| < γ, (27)

||D2j
c(xcc, xu, xc)|| < γ, ||D1D2j

c(xcc, xu, xc)|| < γ. (28)

Moreover, we may suppose all first and second partial derivatives of jcc, ju, jc are
bounded by some Q > 0. Let this Q be large enough that it is an upper bound of
all bounded terms which may come later.

We represent Σ(ω) by

h∗(ω) : TM̃∗(ω,m∗)× Eu∗ (ω,m∗)→ Ec∗(ω,m
∗).

From Proposition 3, h∗(ω)(xcc, xu) is Cr in xu and Dk
2h
∗(ω)(xcc, xu) is C0 in xcc

for 0 ≤ k ≤ r, and the following hold

h∗(ω)(xcc, 0) = 0, D2h
∗(ω)(xcc, 0) = 0, ||D2h

∗(ω)(xcc, xu)|| ≤ δ,
||D2h

∗(ω)(xcc, xu)|| = ||D2h
∗(ω)(xcc, xu)−D2h

∗(ω)(xcc, 0)|| ≤ Q(ω)|xu|.
By the uniform Cr closeness of all M̃(ω)× W̃u(ω) to each other, the C1 closeness
of φ(K,ω) to the deterministic ψ(K), uniformly in ω, and the compactness, we get
a uniform estimate

||D2h
∗(ω)(xcc, xu)|| ≤ Q|xu|. (29)

From the invariance of Σ(ω) we obtain

h∗(ω)(xcc, xu) = jc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)), (30)

where
xcc = jcc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)),



INVARIANT FOLIATION FOR RDS 3655

xu = ju(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)).

Taking the derivative with respect to ξcc formally on both side of (30) gives

D1h
∗(ω)[D1j

cc +D3j
ccD1h

∗(θ−Kω)]

+D2h
∗(ω)[D1j

u +D3j
uD1h

∗(θ−Kω)]

=D1j
c +D3j

cD1h
∗(θ−Kω),

(31)

where the arguments of h∗, j are clear from the context.
For any fixed ω ∈ Ω, let v∗(ω) ∈ C0(TM̃∗(ω)×Eu∗ (ω), L(TM̃∗(ω), Ec∗(ω))) and

v∗ = {v∗(ω) : ω ∈ Ω}. Define

||v∗||Lip = sup
ω

sup
xu 6=0

||v∗(ω)(xcc, xu)||
|xu|

. (32)

Let DS denote the space of all such v∗ with norm given by (32). Under this norm,
DS is a complete metric space. We prove the following functional equation of
v∗ ∈ DS has a unique solution:

v∗(ω)(xcc, xu)[D1j
cc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))

+D3j
cc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))v∗(θ−Kω)(ξcc, ξu)]

+D2h
∗(ω)(xcc, xu)[D1j

u(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))

+D3j
u(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))v∗(θ−Kω)(ξcc, ξu)]

=D1j
c(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))

+D3j
c(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))v∗(θ−Kω)(ξcc, ξu),

(33)

where

xcc = jcc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)),

xu = ju(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)).

We follow the approach of Lemma 4.3.
Define a sequence {vn∗ } ⊂ DS by

v0
∗ = 0,

vn+1
∗ (ω) = [D1j

c +D3j
cD1h

∗(θ−Kω)−D2h
∗(ω)(D1j

u +D3j
uvn∗ (θ−Kω))]

[D1j
cc +D3j

ccvn∗ (θ−Kω)]−1,

where the arguments of h∗(ω) and vn+1
∗ are (xcc, xu), the arguments of h∗(θ−Kω)

and vn∗ are (ξcc, ξu) and the arguments of D1j
cc, D3j

cc, D1j
u, D3j

u, D1j
c, D3j

c

are (ξcc, ξu, h∗(θ−Kω)(ξxx, ξu)).
We prove {vn∗ } is a Cauchy sequence in DS.

Lemma 4.5. ||vn+1
∗ ||Lip ≤ δ.

Proof. The proof of this lemma is straightforward following from (21),(26),(27),(28)
and (29).

Lemma 4.6. ||vn+1
∗ − vn∗ ||Lip < λ||vn∗ − vn−1

∗ ||Lip for some 0 < λ < 1.
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Proof. First, we note that

vn+1
∗ (ω)(xcc, xu)[D1j

cc +D3j
ccvn∗ (θ−Kω)(ξcc, ξu)]

+D2h
∗(ω)[D1j

u +D3j
uvn∗ (θ−Kω)(ξcc, ξu)]

= D1j
c +D3j

cvn∗ (θ−Kω)(ξcc, ξu),

(34)

vn∗ (ω)(xcc, xu)[D1j
cc +D3j

ccvn−1
∗ (θ−Kω)(ξcc, ξu)]

+D2h
∗(ω)[D1j

u +D3j
uvn−1
∗ (θ−Kω)(ξcc, ξu)]

= D1j
c +D3j

cvn−1
∗ (θ−Kω)(ξcc, ξu),

(35)

where the arguments of D1j
cc, D3j

cc, D1j
u, D3j

u, D1j
c, D3j

c are

(ξcc, ξu, h∗(θ−Kω)(ξxx, ξu)).

From (34)−(35), we get

vn+1
∗ (ω)(xcc, xu)− vn∗ (ω)(xcc, xu)

=[D3j
c − vn∗ (θ−Kω)(ξcc, ξu)D3j

cc −D2h
∗(ω)(xcc, xu)D3j

u]

· [vn∗ (θ−Kω)(ξcc, ξu)− vn−1
∗ (θ−Kω)(ξcc, ξu)]

· [D1j
cc +D3j

ccvn∗ (θ−Kω)(ξcc, ξu)]−1.

(36)

We also have

|xu| = |ju(ξcc, ξu, h(θ−Kω)(ξcc, ξu))|
= |ju(ξcc, ξu, h(θ−Kω)(ξcc, ξu))− ju(ξcc, 0, h(θ−Kω)(ξcc, 0))|
≥ (||(D2j

u)−1||−1 − β)|ξu| −Qδ|ξu|.
(37)

From (21),(36) and (37), it is easy to get

||vn+1
∗ (ω)(xcc, xu)− vn∗ (ω)(xcc, xu)||

|xu|

<
1

2

||vn∗ (θ−Kω)(ξcc, ξu)− vn−1
∗ (θ−Kω)(ξcc, ξu)||

|ξu|
,

which gives us

||vn+1
∗ − vn∗ ||Lip ≤

1

2
||vn∗ − vn−1

∗ ||Lip

Let v∗ be the uniform limit of {vn∗ }. We prove that v∗ is the partial derivative
D1h

∗ of h∗. Along the lines of Lemma 4.3, we see that v∗ is the partial derivative
D1h

∗ of h∗. We already have that D2h
∗ exists and is C0. So h∗ is C1 jointly in

(m,xu).
The rest of the proof of Proposition 5 is straightforward, proceeding along the

lines of Proposition 3.

Remark. h(ω,m, xu) is actually Cr−1 jointly in (m,xu).

Besides all the above smoothness properties, the invariant foliation has the fol-
lowing continuity property:

Proposition 6. W̃uu(θtω, x) is C0 in t for any fixed (ω, x).
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Proof. Suppose m(0) is a point on the fiber W̃uu(ω,m) represented by xu(0) +
h(ω,m, xu(0)) in local coordinates. From the invariance of the foliation, we have

φ(t, ω,m(0)) ∈ W̃uu(θtω, φ(t, ω,m)). So φ(t, ω,m(0)) can be represented in local
coordinates by

xu(t) + h(θtω, φ(t, ω,m), xu(t)).

Since φ(t, ω,m(0)) is C0 in t, xu(t) +h(θtω, φ(t, ω,m), xu(t)) is C0 in t. Then since
xu(t) and φ(t, ω,m) are both C0 in t, it must follow that h(θtω,m, xu) is C0 in t,
which gives the conclusion of the proposition.

Remark. From the above proof, we conclude that the smoothness of the fibers
W̃uu(θtω, x) in t for any fixed (ω, x) is the same as the smoothness of any orbit of
the random system.

For the general case where no global chart exists, we construct local charts on
M̃ × W̃u near M̃∗ using a similar method to that in Section 3. Let M×Wu and
M∗ be the deterministic counterparts of M̃ × W̃u and M̃∗, respectively. A result
similar to Lemma 3.1 holds in this setting. In other words, Lemma 3.1 holds if we
replace M and Wu there by M∗ and M×Wu respectively. The compactness of
M∗ gives us local charts onM×Wu nearM∗. The Cr closeness of M̃(ω)×W̃u(ω)

to M×Wu, uniformly in ω induces local charts on M̃ × W̃u near M̃∗ in exactly
the same way as in Section 3, after Lemma 3.1.

In the local charts, the induced random flow φ∗(K,ω) has exactly the same form
as (15):

j(xcc, xu, xc) = (jcc(xcc, xu, xc), ju(xcc, xu, xc), jc(xcc, xu, xc)),

with the understanding that j depends on m∗ ∈ M̃∗(ω) as well. All the estimates
are uniform in m and ω. So the proof also holds in the case of local charts.

4.3. Measurability of the fibers. In this subsection, we prove that the fibers in
the unique family {W̃uu(ω,m) : ω ∈ Ω,m ∈ M̃(ω)} change in a measurable way
with respect to ω.

What we need to do is to prove the representation h∗(ω, xcc, xu) is measurable.
The major difficulty is that the coordinate system we used to construct the unique
family depends on ω. In other words, the coordinates xcc and xu of h∗(ω, xcc, xu)
depend on ω. To overcome this problem, we use the measurability and smoothness of
M̃∗(ω), Eu∗ (ω) and Ec∗(ω) to construct ω-independent coordinates in Rm⊕Rl⊕Rm.

Lemma 4.7. There exists a coordinate system in which h∗ has a new form

h̃∗(ω, ycc, yu)

with the following properties: ycc and yu are independent of ω; h̃∗(ω, ycc, yu) is Cr

in yu and Cr−1 in (ycc, yu) jointly.

Proof. Fix any ω0 ∈ Ω, let m0(ω0) ∈ M̃∗(ω0). Since for different ω ∈ Ω, all

M̃∗(ω) are Cr diffeomorphic to each other, we get a set of points m0(ω) ∈ M̃∗(ω)

corresponding to m0(ω0) ∈ M̃∗(ω0). Then by the measurable selection theorem [6],
there exist measurable bases

{ēu1 (ω,m0(ω)), · · · , ēul (ω,m0(ω))} and {ēc1(ω,m0(ω)), · · · , ēcm(ω,m0(ω))},

of the tangent spaces Eu∗ (ω,m0(ω)) and Ec∗(ω,m0(ω)).
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From the Cr−1 smoothness of M̃∗(ω0), Eu∗ (ω0) and Ec∗(ω0), there exist bases of
the bundles Eu∗ (ω0) and Ec∗(ω0):

{eu1 (ω0,m(ω0)), · · · , eul (ω0,m(ω0))} and {ec1(ω0,m(ω0)), · · · , ecm(ω0,m(ω0))},

which are Cr−1 in m(ω0) and satisfy:

eik(ω0,m0(ω0)) = ēik(ω0,m0(ω0)),

for i = u, k = 1, · · · , l and i = c, k = 1, · · · ,m.
Note that in the above m(ω0) ∈ M̃∗(ω0) is not a function of ω but can vary in

M̃∗(ω0).

For each fixed ω ∈ Ω and m ∈ M̃∗(ω), by the same reasoning, we get possibly
different Cr−1 bases of the bundles Eu∗ (ω) and Ec∗(ω):

{eu1 (ω,m), · · · , eul (ω,m)} and {ec1(ω,m), · · · , ecm(ω,m)},

Claim. These bases can be chosen jointly measurable in (ω,m).

Notice that for fixed m0, they are measurable in ω. From the Cr−1 smoothness,
the measurability of the bundle and the Cr−1 diffeomorphism of the bundles to each
other and to the deterministic counterpart, it follows that they are measurable in
ω and Cr−1 in m and the claim follows.

Therefore, there exist a neighborhood D of 0 in Rm ⊕ Rl ⊕ Rm and a map

T (ω, ·) : M̃(ω)× W̃u(ω)→ D

such that T (ω, ·) is a Cr−1 diffeomorphism for each ω and T (·, z), T−1(·, z) are

measurable for each z ∈ M̃(ω) × W̃u(ω). Here, T−1(·, z) refers to the family of
maps parameterized by ω which are, for fixed z, the inverses of T (ω, ·) at T (ω, z).

Moreover, points on M̃∗(ω) = {(m,m)|m ∈ M̃} are mapped to D∩(Rm×{0}×{0})
and eui (ω,m) are mapped to unit vectors in the ei directions in Rl and ecj(ω,m) are
mapped to unit vectors in the ej directions in Rm.

h∗ has the form h̃∗(ω, ycc, yu) in this new coordinate system D. Obviously, all

the properties listed in the lemma are satisfied by h̃∗.

Our next step is to prove that h̃∗(ω, ycc, yu) is measurable. The following lemma
from [5] will be used:

Lemma 4.8. Given a polish space H and any mapping

P : Ω×H → H,

satisfying that P (ω, ·) is a homeomorphism for any ω ∈ Ω, and P (·, x), P−1(·, x)
are measurable for any x ∈ H, if φ is a continuous random dynamical system, then
so is φ′ defined by

φ′(t, ω, x) := P (θtω, φ(t, ω, P−1(ω, x))).

Recall that, φ∗(t, ω, x) is a Cr random flow in the original ω-dependent coordinate
system. Under the new ω-independent coordinate system, φ∗(t, ω, x) has the form

φ̃∗(t, ω, y) = T (θtω, φ∗(t, ω, T−1(ω)y)).

By the above lemma, φ̃∗(t, ω, y) is a Cr−1 random flow.

Proposition 7. h̃∗(ω, ycc, yu) is Cr−1 in (ycc, yu) and measurable in ω, so is mea-
surable in (ω, ycc, yu).
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Proof. Recall that, in Section 3, we constructed the invariant foliation by finding
the unique fixed point of a contraction mapping G on Sδ (graph transform). So
the invariant foliation is the limit of any starting foliations (starting element of Sδ)
under iterations of the mapping G.

Suppose h0(ω, x,m) is the representation of a starting foliation. After one iter-
ation under the graph transform, h0(ω, x,m) becomes h1(ω, x,m). By Proposition
2, we have the relationship between h0(ω, x,m) and h1(ω, x,m): for h0 ∈ Sδ, ω ∈
Ω, m ∈ M̃(ω),

h1(m,ω)(xu) = gc(h0(θ−Kω,m′)(ξu), ξu)

where

xu = gu(h0(θ−Kω,m′)(ξu), ξu),

m′ = φ(−K,ω)(m).

From the above we see that as long as φ(t, ω, x) is measurable in ω and Cr in x,
gu and gc are measurable in ω and Cr in other coordinates. Therefore, h1 has the
same measurability and smoothness properties as h0.

Now, we consider it in the new coordinate system. We note that h̃∗(ω, ycc, yu) is

the limit of a sequence h̃∗n(ω, ycc, yu) which is generated by iterating the graph of

h̃∗0(ω, ycc, yu) under the graph transform G∗, where G∗ is generated by the random

flow φ̃∗(t, ω, y).

Because φ̃∗(t, ω, y) is a Cr−1 random flow, i.e., measurable in ω and Cr−1 in y,

as long as we take h̃∗0(ω, ycc, yu) ≡ 0, which is Cr−1 in (ycc, yu) and measurable in

ω, we get Cr−1 smoothness and ω-measurability of all the sequence h̃∗n(ω, ycc, yu).

Therefore, the limit h̃∗(ω, ycc, yu) is also measurable in ω.
On the other hand, since the change of the coordinate system is given by T (ω, ·)

which is a Cr−1 diffeomorphism for each ω, h̃∗(ω, ycc, yu) is Cr−1. Therefore,

h̃∗(ω, ycc, yu) is measurable in (ω, ycc, yu).

Summing up the results of this section, we get the following

Proposition 8. The unique family of fibers {W̃uu(ω,m) : ω ∈ Ω,m ∈ M̃(ω)} is a
Cr−1 in m family of Cr manifolds and the fibers in it change measurably with ω.
Moreover, W̃uu(θtω, x) is C0 in t for any fixed (ω, x).

5. Asymptotic property. In this section, we prove that the points on an unsta-
ble fiber W̃uu(ω,m) are equivalent in a certain asymptotic sense and characterize
the invariant foliation. The technical difficulty is the lack of a uniform metric (dis-
tance) on the random unstable (stable) manifold. To overcome this, we again use
the Cr diffeomorphism and Cr closeness of the random unstable manifold to the
corresponding deterministic one.

Since we will not use the smoothness in the base point nor the measurability
of the invariant foliation in this section, we will use the coordinate system used in
Section 3.

Suppose d̂(ω)(·, ·) is the geodesic distance on W̃u(ω): For any m,m′ ∈ W̃u(ω),

d̂(m,m′) is the infimum of the lengths of piecewise smooth rectifiable curves in

W̃u(ω) joining m and m′, if any such curve exists. Otherwise d̂(m,m′) = ∞. Let

d(·, ·) be the geodesic distance on Wu. Then d induces a distance d̃(ω) on W̃u(ω)
in the following manner:

d̃(ω)(m,m′) := inf{length of c(t)}
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for c(t), t ∈ [0, a] a piecewise smooth rectifiable curve joining i−1(ω,m) and i−1(ω,

m′) in Wu. Since Wu and W̃u(ω) are C1 close, and i(ω) are C1 close to Id,

uniformly in ω, we conclude that d̃(ω) is uniformly equivalent to d̂(ω), the geodesic

distance on W̃u(ω). Under d̃, we have

d̃(ω)(Γ(ω,m, ν),m) = |Di−1(ω,m)ν|.

Recall that Γ was used to define local coordinates in Section 3. (See the discus-
sion after Lemma 3.1.) Since Di(ω,m) and Di(ω,m)−1 are uniformly close to the
identity matrix transformation, we can define another uniformly equivalent distance
d(ω) on W̃u(ω) such that

d(ω)(Γ(ω,m, ν),m) = |ν|.

We will use d(ω) to measure the distance on W̃u(ω). To simplify notation, we use
d in place of d(ω). We have the following proposition which characterizes the fiber

W̃uu(ω,m).

Proposition 9. Suppose m,m′ ∈ M̃(ω), p ∈ W̃uu(ω,m) and p′ ∈ W̃uu(ω,m′),
then

(i) d(φ(−t, ω)(p), φ(−t, ω)(m))→ 0 exponentially as t→∞;
(ii) If m 6= m′ and d(φ(−t, ω)(m), φ(−t, ω)(m′))→ 0 as t→∞, then

d(φ(−t, ω)(p), φ(−t, ω)(m))

d(φ(−t, ω)(p′), φ(−t, ω)(m))
→ 0 as t→∞,

d(φ(−t, ω)(p), φ(−t, ω)(m))

d(φ(−t, ω)(p), φ(−t, ω)(m′))
→ 0 as t→∞;

(iii) W̃uu(ω,m) ∩ W̃uu(ω,m′) = ∅ if m 6= m′;

(iv) W̃u(ω) = ∪m∈M̃(ω)W̃uu(ω,m).

Proof. From Proposition 1 we have for K > 0 as in Section 3

||Dφ(−K,ω)(m)|Eu(ω)|| <
1

4
aK1 ,

and

||D((φ|M̃(θ−Kω))(K, θ
−Kω))φ(−K,ω)(m)||r||Dφ(−K,ω)(m)|Eu(ω)|| <

1

4
,

which yield that for some a1 < a2 < 1,

||Dφ(−K,ω)(m)|Eu(ω)|| <
1

4
aK1 <

1

4
aK2 ,

||D((φ|M̃(θ−Kω))(K, θ
−Kω))φ(−K,ω)(m)||k||Dφ(−K,ω)(m)|Eu(ω)|| <

1

4
aK2 ,

where k is no larger than r.
As we obtained the estimates (6), (7) and (11), we get similar estimates:

||[D2g
u(ξc, ξu)]−1|| < 1

3
aK1 , (38)

||[D2g
u(ξc, ξu)]−1||||D1g

c(ξ̄c, ξ̄u)||k < 1

3
aK2 , (39)

and

|gu(h(θ−Kω,m1)(ξu), ξu)| > 2
|ξu|
aK1

, (40)
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where m1 = φ(−K,ω)(m). We have

d(Γ(ω,m, ν),m) = |ν|,

for ω ∈ Ω, m ∈ M̃(ω) and |ν| < ε4. If δ is sufficiently small, and xu ∈ Eu(ω,m)(ε4),

xc ∈ TM̃(ω,m)(ε4) such that |xc| ≤ δ|xu|, for all ω ∈ Ω and m ∈ M̃(ω), then

3

4
|xu| ≤ d(Γ(ω,m, (xu, xc)),m) ≤ 4

3
|xu|. (41)

Moreover, without the condition that |xc| ≤ δ|xu|, there is a constant c5 such that

d(Γ(ω,m, (xu, xc)),m) ≥ c5|xc|.

This is because the angle between Eu(ω,m) and TM̃(ω,m) is bounded away from
zero uniformly.

To prove part (i) and (ii), it is enough to let t approach infinity through multiples
of K.

(i) Let p = Γ(ω,m, (h(ω,m)(xu), xu)),

φ(−K,ω, p) = Γ(θ−Kω,m1, (h(θ−Kω,m1)(ξu), ξu)).

Then we have xu = gu(h(θ−Kω,m1)(ξu), ξu) and by (40), (41),

d(φ(−K,ω)(p), φ(−K,ω)(m)) ≤ 4

3
|ξu| ≤ 4

3
· 1

2
aK1 g

u(h(θ−Kω,m1)(ξu), ξu)

=
2

3
aK1 |xu| ≤

8

9
aK1 d(p,m),

which leads to the conclusion of part (i).
(ii) There exists N large enough such that for n ≥ N ,

d(φ(−nK,ω)(m), φ(−nK,ω)(m′))

are so small that φ(−nK,ω)(m′) can be represented in local coordinates near mn :=

φ(−nK,ω)(m) as (ξ̂cn, ξ̂
u
n), while φ(−nK,ω)(p) is represented as (ξcn, ξ

u
n) where ξc1 =

ξc, ξu1 = ξu, ξ̂c1 = ξ̂c, ξ̂u1 = ξ̂u and ξc0 = xc, ξu0 = xu ξ̂c0 = x̂c, ξ̂u0 = x̂u as before.
Without loss of generality, we may assume that for any n ≥ 0, φ(−nK,ω)(m′)

can be represented in local coordinates near mn.
Since m′ ∈ M̃(ω) and M̃(ω) is invariant under φ(−t, ω), we have

|ξ̂cn| > δ|ξ̂un|

for any n ≥ 0. In particular,

|ξ̂c| > δ|ξ̂u|.

Now

|xu| = |gu(h(θ−Kω,m1)(ξu), (ξu))|
≥ |gu(h(θ−Kω,m1)(ξu), (ξu))− gu(h(θ−Kω,m1)(ξu), 0)|
−|gu(h(θ−Kω,m1)(ξu), 0)− gu(0, 0)|

≥ [||[D2g
u(ξc, ξu)]−1||−1 − β]|ξu| −Qδ|ξu|
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and

|x̂c| = |gc(ξ̂c, ξ̂u)|
≤ |gc(ξ̂c, ξ̂u)− gc(0, ξ̂u)|+ |gc(0, ξ̂u)− gc(0, 0)|
≤ [||D1g

c(ξ̂c, ξ̂u)||+ β]|ξ̂c|+ γ|ξ̂u|

≤ [||D1g
c(ξ̂c, ξ̂u)||+ β +

γ

δ
]|ξ̂c|

= [||D1g
c(ξ̂c, ξ̂u)||+ β + τ ]|ξ̂c|.

So
|ξu|
|ξ̂c|
≤ |x

u|
|x̂c|

||D1g
c(ξ̂c, ξ̂u)||+ β + τ

||[D2gu(ξc, ξu)]−1||−1 − β −Qδ
≤ |x

u|
|x̂c|

aK2 .

Similarly
|ξun|
|ξ̂cn|
≤
|ξun−1|
|ξ̂cn−1|

aK2 ≤ · · · ≤
|xu|
|x̂c|

anK2 .

Since

d(m′,m) = |(x̂c, x̂u)| =
√
|x̂c|2 + |x̂u|2 ≤

√
1

δ2
+ 1 |x̂c| < (1 +

1

δ
)|x̂c|,

we conclude

d(φ(−nK,ω, p), φ(−nK,ω,m))

d(φ(−nK,ω,m′), φ(−nK,ω,m))
≤

3
4 |ξ

u
n|

c5|ξ̂cn|
≤ 3

4c5
anK2

|xu|
|x̂c|
→ 0 as n→∞.

This gives us

d(φ(−t, ω)(p), φ(−t, ω)(m))

d(φ(−t, ω)(m′), φ(−t, ω)(m))
→ 0 exponentially as t→∞. (42)

Part (ii) is a consequence of (42).

(iii) Suppose q ∈ W̃uu(ω,m) ∩ W̃uu(ω,m′) for m 6= m′. By part (i),

d(φ(−t, ω)(q), φ(−t, ω)(m))→ 0 and d(φ(−t, ω)(q), φ(−t, ω)(m′))→ 0

as t→∞. Hence d(φ(−t, ω)(m′), φ(−t, ω)(m))→ 0. Then by part (ii),

1 ≤ d(φ(−t, ω)(q), φ(−t, ω)(m)) + d(φ(−t, ω)(q), φ(−t, ω)(m′))

d(φ(−t, ω)(m′), φ(−t, ω)(m))
→ 0,

which is a contradiction.
(iv) Suppose (U,Φ) is a local chart on M̃(ω) about a point m ∈ M̃(ω) such that

Eu(ω) has a Cr−1 orthonormal basis in U . Let (V,Ψ) be a local chart on W̃u(ω)
about m. Define a map χ : Rm × Rl → Rm+l by

χ(xc, xu) = Ψ(Γ(ω,Φ−1xc, (h(ω,Φ−1xc)(xu), xu))).

Then this is a one-to-one continuous map from Euclidean space to Euclidean space
with the same dimension. By invariance of domain this map is a homeomorphism.
From this fact we conclude that

W̃u(ω) = ∪m∈M̃(ω)W̃
uu(ω,m).

Propositions 2, 3, 4, 5, 8 and 9 comprise the proof of Theorem 2.3.
By considering the time-reversed flow, we have Theorem 2.4.
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6. Results for overflowing invariant manifolds. In this section, we recall re-
sults for the existence of overflowing and inflowing invariant manifolds and give
theorems concerning their foliations. The proofs follow in the same fashion as those
for the foliations of stable and unstable manifolds of normally hyperbolic invariant
manifolds with slight modifications. We will mainly discuss the conditions of the
theorems but not their proofs.

We remark here that random overflowing and inflowing invariant manifolds are
similarly defined as for the random invariant manifold and that the normal hyper-
bolicity for random overflowing and inflowing invariant manifolds could be similarly
defined as we did in definition 2.1. For the exact definitions we refer to [15].

We first recall the results on persistence of overflowing manifolds under random
perturbations [15]:

Proposition 10. Assume that ψ(t)(x) is a deterministic Cr flow, r ≥ 1, which has
a compact, connected Cr normally stably hyperbolic overflowing invariant manifold
M̄ = M∪ ∂M ⊂ Rn. Then there exists ρ > 0 such that for any Cr random flow
φ(t, ω, x) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

and ᾱ < rβ̄, φ(t, ω) has a Cr normally hyperbolic random overflowing invariant

manifold M̃(ω) such that for each ω ∈ Ω, M̃(ω) is Cr diffeomorphic to M.

Remark 1. If the normal direction contains both stable and unstable directions
and is normally hyperbolic, then an unstable manifold exists (see [9] theorem 4)
and persists under random perturbation([15]).

For inflowing invariant manifolds we have

Proposition 11. Assume that ψ(t)(x) is a deterministic Cr flow, r ≥ 1, which has
a compact, connected Cr normally unstably hyperbolic inflowing invariant manifold
M̄ = M∪ ∂M ⊂ Rn. Then there exists ρ > 0 such that for any Cr random flow
φ(t, ω, x) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

and ᾱ < rβ̄, φ(t, ω) has a Cr normally hyperbolic random inflowing invariant man-

ifold M̃(ω) such that for each ω ∈ Ω, M̃(ω) is Cr diffeomorphic to M.

Remark 2. If the normal direction contains both stable and unstable directions
and is normally hyperbolic, then a stable manifold exists ([9]) and persists under
random perturbation ([15]).

Now, we discuss the foliation results for all four cases above.
Recall that we use the negative invariance property of the random unstable man-

ifold (positive invariance property of the random stable manifold) and the same
negative (positive) invariance of the center manifold to unambiguously define a
transform on the space of all fibers. In other words, to construct the unique family
of fibers, we demand the normal direction and the center direction have the same
invariance property.

Under the conditions of Propositions 10, the normal direction is positively invari-
ant while the center direction is negatively invariant, which implies that the graph
transform can not be defined for all points and that the neighborhood of the center
manifold can not be foliated completely. The case of Proposition 11 is similar.
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For the cases in Remarks 1 and 2, we generally do not have the persistence of
the center manifold. And we do not have a result about the foliation of the random
unstable manifold based on the random center manifold, because there is no random
center manifold. In order for the random unstable manifold in Remark 1 (random
stable manifold in Remark 2) to be foliated, some extra conditions should be given.
We have the following proposition [15]:

Proposition 12. Assume that ψ(t) is a Cr flow, r ≥ 1, and has compact, connected
Cr normally hyperbolic overflowing (inflowing) invariant manifold M̄ =M∪∂M⊂
Rn with α < rβ,M has both stable and unstable manifoldsWs andWu. Then there
exists ρ > 0 such that for any random Cr flow φ(t, ω) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

then as long as φ(t, ω) has compact, connected Cr random overflowing (inflowing)

invariant manifold ¯̃M(ω) with stable and unstable manifolds W̃s(ω) and W̃u(ω)

such that ¯̃M(ω), W̃s(ω) and W̃u(ω) are C1 close to M̄, Ws and Wu, respectively.

Then ¯̃M(ω) is normally hyperbolic with constant α < rβ.

Corresponding to the above proposition, we have the following two theorems:

Theorem 6.1. Under the conditions of Proposition 12, for the overflowing case,
there exists a unique Cr−1 family of Cr submanifolds

{
W̃uu(ω, x) : ω ∈ Ω, x ∈

M̃(ω)
}

of W̃u(ω) satisfying:

(1) For each (ω, x) ∈ Ω×M̃,M̃(ω)∩W̃uu(ω, x) = {x}, TxW̃uu(ω, x) = Eu(ω, x)

and W̃uu(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃uu(ω, x1) ∩ W̃uu(ω, x2) = ∅, and

W̃u(ω) = ∪x∈M̃(ω)W̃
uu(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃uu(ω, x)

)
⊂ W̃uu(θtω, φ(t, ω)x) for all t > 0 such

that φ(t, ω)x ∈ M̃(θtω).

(4) For y ∈ W̃uu(ω, x) and x1 6= x ∈ M̃(ω) with |φ(t, ω)(x1)− φ(t, ω)(x)| → 0 as
t→ −∞, we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ −∞.
(5) For y1, y2 ∈ W̃uu(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t →
−∞.

(6) W̃uu(θtω, x) is C0 in t for any fixed (ω, x).

Theorem 6.2. Under the conditions of Proposition 12, for the inflowing case, there
exists a unique Cr−1 family of Cr submanifolds

{
W̃ss(ω, x) : ω ∈ Ω, x ∈ M̃(ω)

}
of W̃s(ω) satisfying:

(1) For each (ω, x) ∈ Ω× M̃,M̃(ω) ∩ W̃ss(ω, x) = {x}, TxW̃ ss(ω, x) = Es(ω, x)

and W̃ ss(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃ss(ω, x1) ∩ W̃ss(ω, x2) = ∅, and

W̃s(ω) = ∪x∈M̃(ω)W̃
ss(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃ss(ω, x)

)
⊂ W̃ss(θtω, φ(t, ω)x) for all t < 0 such

that φ(t, ω)x ∈ M̃(θtω).
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(4) For y ∈ W̃ss(ω, x) and x1 6= x ∈ M̃(ω) with |φ(t, ω)(x1)− φ(t, ω)(x)| → 0 as
t→∞, we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ +∞.
(5) For y1, y2 ∈ W̃ss(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t →

+∞.
(6) W̃ss(θtω, x) is C0 in t for any fixed (ω, x).
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