Homework for Math 152H-1 November 27

Reading: Read example 1 on pg 346, make sure you understand it! Look at table 5.3, read pages 352-353.
Homework: In the book a partition is called P, and its norm is denoted $\|P\|$. So, $\|P\| \rightarrow 0$ means use skinnier and skinnier rectangles as the number of rectangles goes to ∞. Do pg $352 \# 3,5,7,55,59,67$ and read "Approximating Finite Sums with Integrals" on pg. 392-394, do \# 23, 25, 26.

As a bonus problem consider the great question from class. You have the following function:

$$
f(x)= \begin{cases}3 & x \neq \sqrt{2} \\ 1 & x=\sqrt{2}\end{cases}
$$

Let's use Riemann sums to show that $\int_{1}^{2} f(x) d x=3$ (exactly as if we had $y=3$ for our function and there was no jump at $\sqrt{2}$).
We'll do this just for Riemann sums with all rectangles having the same width ($\frac{1}{n}$). $\sqrt{2}$ will never be an endpoint of one of these sub-intervals since it is irrational. So the Riemann sum is $\frac{1}{n} \sum_{i=1}^{n} f\left(c_{i}\right)$ where c_{i} is the right endpoint of each sub-interval except when $\sqrt{2}$ is in the sub-interval. For that sub-interval we choose $c_{j}=\sqrt{2}$. Now, compute the value of the Riemann sum for the n-rectangles, without Σ-notation and see what happens to the result as $n \rightarrow \infty$. Why does the jump at $\sqrt{2}$ have no effect on the limit?

Adapt this argument to any partition and any choice of c_{j} to see that the integral does exist.
Suppose we let $f(x)$ be 3 everywhere except at a finite number of jumps, where it is defined but not equal to 3 . Does $\int_{a}^{b} f(x) d x$ exist for any a and b ?

