
ON KNOT FLOER HOMOLOGY IN DOUBLE BRANCHED COVERS

LAWRENCE ROBERTS

1. Introduction

Let L be a link in A×I where A is an annulus. We consider A×I to be embedded in R2×R

respecting the obvious fibration and embedding A into a round annulus in R2. We always
project L into R2 (or A) along the R-fibration. The complement of L in A × I is thereby
identified with the complement of B∪L in S3 where B an unknot as depicted below, called
the axis of L. We assume throughout that L intersects the spanning disc of B in an odd
number of points. For example,

B
L

Let Σ(L) be the branched double cover of S3 over L, and let B̃ be the pre-image of B in

Σ(L). Then B̃ is a null-homologous knot in Σ(L) and we can try to compute

ĤFK(Σ(L), B̃, i) =
⊕

{s | 〈c1(s),[F ]〉= 2i}

ĤFK(Σ(L), B̃, s)

where s is a relative Spinc structure for B̃ and [F ] is the homology class of a pre-image of
a spanning disc for B. A particularly interesting case will be when L is a braid. Then the

pre-image of the open book of discs with binding B is an open book with binding B̃.

To obtain a clean statement we need to adjust L by adding two copies of the center of
A which are split from the remainder of L. We call this new link L′. The effect on the

branched double cover is to produce Σ(L)#2S1×S2 containing a knot B̃#B(0, 0). We can
then prove

Proposition 1.1. Let L be a link in A×I ⊂ R2×R as above. Let L′ be the adjusted version
of L. There is a spectral sequence whose E2 term is isomorphic to the reduced Khovanov

skein homology of the mirror, L
′
, in A × I with coefficients in F2 and which converges to

⊕i∈ZĤFK(Σ(L)#2(S1 × S2), B̃#B(0, 0), i,F2).
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In [12] P. Ozsváth and Z. Szabó constructed a spectral sequence which converged to ĤF (Y )
for Y a double branched cover of a link in S3. This spectral sequence featured the reduced
Khovanov homology of the mirror of the link as the E2 term. The previous proposition is
a generalization of this result.

In the first half of this paper, we review the skein homology, first constructed in [1], and
examine its relationship to Khovanov homology. We then describe a spanning tree approach
to computing this homology theory. This complex allows us to analyze the situation of L

being alternating. Once this is completed we turn to building the relationship with knot
Floer homology.

In the second half, we derive the relationship between the two theories as the spectral
sequence explained abover. We then turn to deriving some consequences of these spectral

sequences. First, in [13], O. Plamenevskaya constructed a special element, ψ̃(L), of the
Khovanov homology of a braid and showed that it is an invariant of the transverse isotopy
class of the braid. She suggested that for certain knots, should this element survive in the
spectral sequence, it would yield the contact invariant of the contact structure lifted from
S3 to the double branched cover branched over the transverse knot. This element is also a
closed element in the skein homology where it defines the unique minimal filtration level.
From these considerations we can prove

Proposition 1.2. Suppose there exists a n such that

(1) ψ(L) is exact in the reduced Khovanov homology
(2) The link surgery induced spectral sequence on X/X−2g collapses at E2.

then c(ξ) = 0.

where c(ξ) is the contact element for the lifted open book. The notation in this proposition
is explained in section 8.

Furthermore, for L alternating for the projection A × I → A much more can be said.
We use the analysis of the skein homology for alternating L to prove the main theorem of
the paper, theorem 9.1.

Theorem 1.3. Let L be a non-split alternating link in A× I intersecting the spanning disc
for B in an odd number of points. Then for each k there is an isomorphism

ĤFK(−Σ(L)#2
(
S1 × S2

)
, B̃#B(0, 0), k) ∼=

⊕

i,j∈Z

H i;j,2k(L)

where, for each Spinc structure, the elements on the right side all have the same absolute
Z/2Z-grading. Together these isomorphisms induce a filtered quasi-isomorphism from the
E2-page of the knot Floer homology spectral sequence to that of the skein homology spectral
sequence. Thus the knot Floer spectral sequence collapses after two steps. Furthermore, for
any s ∈ Spinc(Σ(L)) we have that

τ(B̃, s) = 0

where B̃ is considered in Σ(L).
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In a sequel to this paper, we reprove the above theorem for Z-coefficients and use it to
analyze a class of fibered knots in certain three manifolds.

Acknowledgements: The author would like to thank John Baldwin and Olga Plamenevskaya
for some very useful correspondence.

2. The Reduced Khovanov Skein Homology of [1]

Throughout we will assume all coefficients are in F2 and suppress the ring notation. This
section gives a brief description of a reduced form of the theory in [1] for categorifiying the
Kauffman bracket skein module for the I-bundle A×I and its relationship with the reduced
Khovanov homology. We adjust the account in [1] to conform to that of Bar-Natan, [3].
This alters the gradings from [1] to more directly related to Khovanov’s original definition.

Pick an order for the c(L) crossings in a projection, P, of L to A. Let R be an ele-

ment of {0, 1}c(L), then associate to R a collection of disjoint, simple, unoriented circles in
A by resolving the crossings of P according to:

0
−→

1
−→

We denote the resulting diagram by P(R). Let I(R) be

I(R) =
∑

mi where R = {m1, . . . ,mn}

Finally, call an unoriented circle resulting from the resolution trivial if it bounds a disc in
A, and non-trivial if it does not.

An enhanced Kauffman state is then a choice of resolutions, R, and a choice of {+,−}
for each of the resulting circles. As usual the enhanced states will be the generators of the
chain groups. We define two bi-graded modules V ∼= Fv+ ⊕ Fv− and W ∼= Fw+ ⊕ Fw−

where deg(v+) = (1, 1), deg(w+) = (1, 0) and deg(v−) = −deg(v+), deg(w−) = −deg(w+).
If the resolution R results in m trivial circles and l non-trivial circles we associate to R the
bi-graded module

VR(L) = V ⊗l ⊗W⊗m{(I(R), 0)}

We will refer to the first grading in the ordered pair as the q-grading and the second as the
f -grading.

The rth chain group, Cr is then ⊕{R|I(R)=r}VR(L). These will form the components of
a complex, C, and the Khovanov skein complex will be C[−n−]{(n+ − 2n−, 0)} for some
orientation on the link L. The shift in [·] occurs in the dimension of the chain group. This
last set of shifts1 will be called the final shifts. We will often only be interested in relative
gradings, and so will sometimes ignore the final shifts. The complex before the final shifts

1We follow Bar-Natan’s shifting conventions
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will be called unshifted.

We now define the differential in the complex. As usual, we specify what happens when two
circles merge in a 0 → 1 resolution change, or what happens when a single circle divides.
This suffices to specify the differential as in [3]. The relevant maps for merging are

w+ ⊗ w+ → w+ v+ ⊗ v+ → 0
w+ ⊗ w−, w− ⊗ w+ → w− v+ ⊗ v−, v− ⊗ v+ → w−

w− ⊗ w− → 0 v− ⊗ v− → 0

v± ⊗ w−, w− ⊗ v± → 0
w+ ⊗ v±, v± ⊗ w+ → v±

The relevant maps for dividing are

w− → w− ⊗ w− v+ → v+ ⊗ w− v− → v− ⊗ w−

w+ → w− ⊗ w+ + w+ ⊗ w− w+ → v+ ⊗ v− + v− ⊗ v+

where the rule for w− is determined by the topological type of the circles in the result (two
trivial or two non-trivial circles).

Theorem 2.1. [1] The tri-graded homology, H(L), of the complex C[−n−]{(n+ − 2n−, 0)}
with the differential defined above is an invariant of the oriented link L in A× I.

Proof: Let S(P) be the set of enhanced states and define for S ∈ S(P)

τ(S) = #{positive trivial circles} −#{negative trivial circles}

Ψ(S) = #{positive non− trivial circles} −#{negative non− trivial circles}

J(S) = I(S) + τ(S) + Ψ(S)

Let Sijk(P) be the subset of S(P) with I(S) = i, J(S) = j, and Ψ(S) = k. Define Ci;jk(P)
to be the free abelian group generated by Sijk(P). It is shown in [1] that the maps above

define a differential on Ci;jk(P) which increases the i grading by 1. Actually, this is proved
with J ′(S) = I(S) + τ(S), but as the differential does not change k, the proof applies here
as well. Their homology is RII and RIII invariant. With the shifts from a choice of ori-
entation on the link, the theory we have outlined is also RI invariant. As with translation
from Viro’s notation to Bar-Natan’s the shifts at the end are also necessary to pin down
an invariant grading for RII, but the relative graded theory is invariant regardless. ♦

Let B(A) ∼= {0, 1, . . . , } be the set of all link diagrams in A with no crossings or trivial
components. Using the rules

= + tq , L ∪© = (q + q−1)L.
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we can associate an element of Z[q±1, t,B(A)] to any diagram of L, denoted [L]. If we map
the monoid B(A) to Z[q±1, x±1] by 1 → qx + q−1x−1 we get a map φ : Z[q±1, t,B(A)] →
Z[q±1, t, x±1]. After orienting L, let V (t, q, x) = tn−qn+−2n−φ(L) which equals

∑
k∈Z

qk,Lx
k

where

qk,L = χq,t(H
∗;∗ k(L)) =

∑

i,j

tiqjrkF

(
H i;jk(L)

)

The Euler characteristic for the skein homology is then V (−1, q, x) and is an isotopy in-
variant of L in A× I. On the other hand V (−1, q, 1) is the Jones polynomial as described
by Khovanov (see also [3]).

There is also a reduced version of this theory. We mark the circle in P that is closest
to the center, at the point intersecting the spanning disc for B. Every diagram P(R) inher-
its this marking. Note that the marked circle in the resolved diagrams may be either trivial
or non-trivial. The reduced homology is then defined to be the homology of the quotient
of the above complex by the subcomplex generated by the enhanced states assigning a −

sign to the marked circle. The reduced chain groups are denoted ṼL(P) and the overall

homology by H̃ i;jk.

Lemma 1. For each j, there is a spectral sequence whose E1 term is ⊕i,kH
i;jk(L) and which

converges to ⊕iH
i,j(L), where H i,j(L) is the usual Khovanov homology for the embedding

L→ A× I → S3. This statement also applies to the reduced theory.

Proof: The entire construction has been performed so that by ignoring the distinction
between trivial and non-trivial circles we obtain the Khovanov chain groups, i.e. if we use
L→ A×I → R2×I as an embedding of L in S3 and ignore the axis. In this case we neglect
the f -grading and treat v± and w± the same. The maps defining the differential above are
almost those for the Khovanov homology, with the exception of a few terms which have
been dropped. These terms are boxed below:

v+ → v+ ⊗ w− + v− ⊗ w+ v+ ⊗ v+ → w+

v+ ⊗ w−, w− ⊗ v+ → v− w− → v− ⊗ v−

Each of these terms preserves the q-grading, increases the i grading by 1, but decreases the
f -grading by 2. Thus, the axis can be seen as filtering the Khovanov homology, with the
E1 term of the corresponding spectral sequence being the Khovanov skein homology. Since
the maps in the spectral sequence also preserve the − subcomplex, this conclusion occurs
for the reduced homology as well. ♦

Lemma 2. Let L be the mirror of L. Then there is an isomorphism

H i;jk(L) ∼= H−i;−j,−k(L)
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where Hi;jk is the corresponding cohomology group. Over a field, F, the last group is also

isomorphic to H−i;−j,−k
F

(L). Furthermore, the spectral sequence converging to Khovanov
homology on H∗;∗∗(L) is filtered chain isomorphic to that induced on the cohomology groups
H∗;∗∗(L) by the higher differentials on H∗;∗∗(L).

Proof: Each state for L defines a state for L by reversing the sign assignment on each
circle. In addition, 0 resolutions are now 1 resolutions and vice-versa. Thus, i→ c(L)− i,
j → c(L)− j, and k → −k in the unshifted theory. Examining the differential for between
two states shows that the differential for L is the differential for the cohomology of L.
Furthermore, after the final shifts we have (i, j, k) → (i − n−, j + n+ − 2n−, k) for L and
(c− i, c− j,−k) → (c− i− n+, c− j + n− − 2n+,−k), where n− and n+ refer to L. This
last triple equals (−(i − n−),−(j + n+ − 2n−),−k). For coefficients in a field standard
homological algebra implies that

HF

i;jk(L) ∼= H i;jk
F

(L)

Carefully examining the terms giving rise to the spectral sequence shows that these map
to the terms in the spectral sequence on the cohomology. ♦

Since the k-grading filters the Khovanov complex, we can define for any element ξ ∈
KH i,j(L) a number

TL(ξ) = min{k : ξ ∈ Im
(
H∗(⊕l≤kC

i;jl)→ KH i,j(L)
)
}.

When L is an unknot these numbers satisfy a relation similar to the τ invariant in knot
Floer homology.

Lemma 3. Assume L is an unknot and let L be its mirror image. Let u± be the generators
of the Khovanov homology of the unknot in q-gradings ±1. Then

TL(u±1) = −T
L
(u∓1)

Proof: Let Fj;s = ⊕i;k≤sC
i;jk(L) and let Cj = ⊕i,kC

i;jk(L). Since the differential preserves
the q-grading, j, there is a long exact sequence:

0 −→ Fj;s
Is−→ Cj

Ps−→ Qj;s −→ 0

where Qj;s is the quotient complex, Cj/Fj;s. Now ⊕jH∗(Cj) = Zu+ ⊕ Zu−, and TL mea-
sures the first s for which the map in the long exact sequence on homology will include u±

in the image of Is∗ relative to the q-grading.

There is a duality isomorphism D : H i;j(U) → H−i;−j(U), D(u±) = u∓, on the Kho-

vanov homologies which is induced by the symmetric pairing a+ ⊗ a−
m
−→ a−

ǫ
−→ 1 where

ǫ : A → Z is the counit for the Frobenius algebra underlying Khovanov homology. In
particular, a+ → 〈a+, ·〉 = a∗−. This can be extended to V as well, and corresponds to
changing the markers on each of the circles in an enhanced state. It thus induces a map on
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the skein homology spectral sequences. Checking the effect on the differential establishes
the following commutative square:

0

0

Q∗
−1;−s−1(U) C∗

−1(U)

F+1,s(U) C1(U)

F∗
−1,−s−1(U)

Q+1;s(U)

0

0

.......................................................

.....
..
..
..
.

..............................................................................

.....
..
..
..
.

.......................................................................................................

.....
..
..
..
.

P ∗
−s−1

.......................................................................................................................................

.....
..
..
..
.

Is
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
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.
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.
.
..
.
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.
.
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..
..

.

.
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.

.

.

.

.

..
..

D

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.
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.
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.
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.
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.
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.
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..
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.
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.
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.

.

.

.

..
..

D

.......................................................................................................

.....
..
..
..
.

I∗−s−1

.......................................................................................................................................

.....
..
..
..
.

Ps
.
.
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.
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.
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.
.
..
.
.
.
.
.
.
.
..
..

.

.

.

.

.

.

.

.

..
..

D

..............................................................................

.....
..
..
..
.

.......................................................

.....
..
..
..
.

If u+ is in the image of Is, then u∗
− is in the image of P ∗

−s−1. In paticular, I∗−s−1(u
∗
−) = 0.

But then there is no element in F−1,−s−1 which maps to u− and so −s − 1 < T
L
(u−).

Thus if s = TL(u+) then −TL(u+) ≤ T
L
(u−). If u+ is not in the image of Is – i.e.

s < TL(u+) – then I∗−s−1(u
∗
−) 6= 0. Choose some element on which this image pairs non-

trivially and is uniformly in q-grading −1. This element must then map in homology to
a− and −s− 1 ≥ T

L
(u−). In particular, if s = TL(u+)− 1 then −TL(u+) ≥ T

L
(u−). This

proves the result. ♦

Let L1 and L2 be two links in A × I. Let L = L1|L2 be the link in A × I where
A = {z : 1 ≤ |z| ≤ 3} and L1 lies in {z : 1 ≤ |z| ≤ 2}×I while L2 lies in {z : 2 ≤ |z| ≤ 3}×I.
Then we can prove

Lemma 4. With coefficients in a field, F, there is an isomorphism

H i;jk(L) ∼=
⊕

i1 + i2 = i, j1 + j2 = j
k1 + k2 = k

H i1;j1k1(L1)⊗H
i2;j2k2(L2)

In fact, this is an isomorphism of spectral sequences, so that if ξ1 ∈ KH i1;j1(L1) and
ξ2 ∈ KH

i1;j1(L1) then
TL(ξ1 ⊗ ξ2) = TL1

(ξ1) + TL2
(ξ2)

Finally, if there is a non-trivial component, L1, split from the rest of L, it can be made to
lie in the diagram without crossing any other strand of L. L1 survives unchanged in every
resolution; thus, marking it induces a marking on a non-trivial circle for every resolution
When the number of intersections of L with the spanning disc for B is odd, then the reduced

skein homology of this configuration has the form H̃(L − L1) ⊗ V . This choice shifts the
complex by {(1, 1)}, so we will always shift at the end to compensate. Thus, the final shift
will be [−n−]{(n+ − 2n− − 1,−1)} for this marking convention. This component is special
and doesn’t participate in the calculations. Thus for the mirror, we keep it labelled + and
derive the same duality for the mirror image as previously.

3. Spanning Tree Complex

As with Khovanov homology, the skein homology for links in A× I with connected projec-
tions admits another presentation in terms of the spanning trees for the knot diagram. We
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follow [16] in establishing this result, but see also [4].

Start with the projection of L in the plane and follow Wehrli’s algorithm. First, num-
ber the crossings. Now proceed to resolve the first crossing if both resolutions produce
connected diagrams. The homology can be shown to be a mapping cone on these resolu-
tions. If resolving the first crossing disconnects the diagram for one or other resolution,
proceed to the next crossing until you come to one where both resolved diagrams are con-
nected or you run out of crossings. Now iterate this procedure on the resolved diagrams.
The result is a tree of diagrams, the resolution tree, whose leaves correspond to unknots
that are reducible to the standard unknot using only the first Reidemeister move. There is
a unique way to smooth the remaining crossings to get an unknot in the plane. Likewise
to each complete smoothing which produces an unknot in the plane there is a unique leaf
which smooths to it (due to the enumeration of the crossings). Let K1(L) be the complete
smoothings with only one component and for each S ∈ K1(D) let DS be the twisted unknot
corresponding to S.

We can prove that the unshifted skein complexes behave in the following way due to an RI
move:

C( ) ∼= C( ){(−1, 0)} ⊕ B1 C( ) ∼= C( )[1]{(2, 0)} ⊕ B2

where B1 and B2 are contractible. It does not matter whether the RI move involves trivial
or non-trivial components in the complete smoothings. The shifts result from the invariance
of the theory after the final shifts are performed. For the first RI move above, the left side
would need to be shifted [0]{(1, 0)} further than the right side, due to the extra positive
crossing. Thus the right side should be shifted {(−1, 0)} to correspond to the left side in
the unshifted complex.

With this observation we may proceed analogous to [16] to obtain the following propo-
sition:

Lemma 5. [16] Let L ⊂ A×I have a connected diagram in A. Then there is a decomposition
C ∼= A⊕B where C is the unshifted version of the skein complex, B is contractible, and A
is given by

A =
⊕

S∈K1(L)

H∗;∗∗(DS)[−w(DS)]{(−2w(DS), 0)}[r(S)]{(r(S), 0)}

where w(Ds) is the writhe of Ds, and r(D,S) is the number of 1 smoothings necessary in
resolving L to get S.

Of course, the unshifted homology H∗;∗∗(DS) does not change while using Reidemeister
I moves, but the difference between considering DS in A and in the plane is precisely to
disallow RI moves which would need to cross B. Thus DS can be simplified to D′

S , a twisted
unknot, where all the twisting ultimately must link with B. This implies that D′

S is isotopic
to a knot of the special form in Figure 1, where each ni records the number of half twists.
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n1

−n2

±nk

∓nk−1

Figure 1. The special class of unknots which act as the base cases for the
spanning tree complex.

The homologies of these knots form the building blocks of the spanning tree complex above.

Since we assumed that the number of intersections with the spanning disk is odd, the dia-
gram DS must be non-trivial, and thus link B. Suppose a connected diagram, fully reduced
in A × I does not look as above. Choose a region “under” B and follow it around clock-
wise and counter-clockwise. Suppose in both directions we come to crossing regions which
traverse the region, as we must since the diagram is connected. Suppose that these twist
regions are distinct. Since the diagram is fully RI reducible, only the strands of one of the
twist regions can link B. The other must then reduce using RI moves, since the diagram is
essentially planar. This forces a knot isotopic to one of the unknots seen above.

We can say a little more concerning the unknots in 1. In particular, we compute the
numbers, TL, for these unknots. Let #(T±) be the number of left/right-handed twist re-
gions in Figure 1. Since these are unknots, their Khovanov homologies are composed of
Fu+ in homological and q-grading (0, 1) and Fu− in (0,−1). Finally, assume that L links
the axis an odd number of times. We can then prove:

Proposition 3.1. For the special unknotted branch loci in Figure 1, let T (L) denote
#(T−)−#(T+). Then

TL(u±1) = T (L)± 1.

For the alternating unknots in this family, TL(u±1) = ±1.

Proof: These unknots are isotopic to the standard planar unknot using only RI-moves.
M. Jacobsson provides rules for mapping closed elements in the Khovanov cube of a link to
those of the link with a single RI move, which in our notation are as in Figure 2. We can
use these moves to try to compute TL(u±1). As a first step, we exhibit a specific generator
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∈

−

+

++
+

−
− −

− −

∈

+

+

−
−

+

Figure 2. Rules for transfering generators when an RI move is applied.
The particular twist is represented on the far right. Note that these maps
are chain maps inducing isomorphisms on the Khovanov homologies, [7]

Figure 3

which will produce u±1 in homology. The maximal value of k needed to obtain this gener-
ator in ⊕l≤kC

i;jk will then be an upper bound on TL(u±1).

Consider an unknot as in Figure 3 formed by resolving all the crossings of L horizontally.
We begin by examining the effect of replacing the outermost resolution with a crossing,
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according to the Jacobbson rules. According to these rules, for left handed twist regions, a
− on the outer circle will propagate to each new circle as we change the resolution at each
crossing. Meanwhile a + maps to a linear combination of the two generators formed by a
+ on one of the new circles and a − on the other, or vice-versa. For right handed twist
regions the argument is slightly different. Namely, + markers are placed on the inner circles
regardless of the marker on the outer circle. This is a chain map since the disconnected
diagram occurs as the 1-resolution for the new crossing.

When resolving the outermost crossing there are four cases to consider:

(1) The crossing occurs in a left handed twist region, and the original circle is labelled
with a −. Then each new circle will be labelled with a minus until we come to a right
handed twist region. All the non-trivial circles formed by the resolution changes
will be labelled with a minus and thus we have a contribution of −#(T+) − 1 to
the k-grading, as this is the number of non-trivial circles in this group. The right
handed twist region which may follow will be of the type (2), to which we turn now.

(2) The crossing is in a right handed twist region, and the circle is labelled with a −.
Then all the new circles will be labelled with +’s until the next left handed region,
which is of type (3). There are #(T−) nontrivial circles which receive a + marking
in this way. If the − is the outermost in the whole diagram, we have a contribution
of #(T−) − 1. If it comes from a left handed region preceding, say from case (1),
then we have added #(T−) to the amount already there, which we assume satisfies
the proposition. Thus, we will still satisfy the proposition after this right handed
region, especially if it is the last. For example, if we pass from type (1) to type (2),
we can associate each marker with the twist region on its right, including here the
unbounded complement of the diagram as a left handed region. This gives a total
of #(T−)−#(T+)− 1.

(3) The crossing is in a left handed region, and the circle is labelled with a +. This is the
case where we need the linear combination of generators. The crucial observation
is that the linear combination, which grows at each crossing in the twist region,
ultimatley involves generators with at most one + marker abutting the crossings in
the consecutive left handed twist regions. If we place the + on a circle and the −
on the new circle, then all additional circles until we change handedness will have a
−. However, if we place the + on the new circle, and a − on the old circle, we will
generate a string of −’s to the right of the +. If the + marker is on a non-trivial
circle, the total number of non-trival plus circles does not change, whereas there
will be #(T+) minus markers introduced. If it is on a trivial circle, then there are
#(T+)+1 minus markers introduced and these generators are in a smaller k-grading.
Whatever marker winds up on the non-trivial circle at the junction with the next
right handed twist region is immaterial as both type (2) and (4) will propagate the
same number of additional + markers.

(4) If the crossing is in a right handed twist region, and the circle is labelled with a
plus we obtain plus markers on all the new circles until the next left handed twist
region. If the circle is the outermost, this is a contribution of #(T−)+1. If it follow
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another region, we have added #(T−) to the running total, and the proposition is
still satisfied.

Note that type (1) can only occur in the very outermost twist region, since the right handed
twist regions always pass a + marker to the next left handed region. It is type (3) which
truly determines the outcome. Checking the numerics shows that the maximal k-grading
for the generators in the linear combination so produced is #(T−)−#(T+)± 1 where the
sign of ±1 is determined by whether we start with a + or − marker on the unknot in Figure
3. Since these are generators of the Khovanov homology for the unknot, and the maps in
Figure 2 are the chain maps used to show the RI-invariance of Khovanov homology, we
have exhibited an element of the chain complex of the skein homology which survives the
spectral sequence and will represent one of u± depending on the original marker.

Altogether, this shows that TL(u±1) ≤ #(T−) − #(T+) ± 1. However, the argument also
applies to L and we know that T

L
(u∓1) = −TL(u±1). In the mirror image there are #(T+)

left handed regions and #(T−) right handed regions. Hence, T
L
(u∓1) ≤ #(T+)−#(T−)∓1.

Replacing the left side with −TL(u±1) gives TL(u±1) ≥ #(T−) − #(T+) ± 1, and the re-
sult follows The final statement is simply a reflection of the even number of twist regions,
alternating between handedness, when there are an odd number of strands. ♦

4. Results for the skein homology of alternating links

The goal of this section is to use the spanning tree presentation of the skein homology to
prove the following theorem

Theorem 4.1. Let L be an alternating link in A× I intersecting the spanning disc for B
in an odd number of points. Then the Khovanov skein homology H i;jk(L) is trivial unless
k − j + 2i = σ(L). Thus the homology is determined by the Euler generating polynomial
V (t, q, x) = tn−qn+−2n−φ([L]), defined in section 1, and the signature of the oriented link
σ(L), thought of as embedded in S3.

We will follow [16] in calculating the Khovanov-type homology of an alternating configura-
tion. Both provide simplified proofs of E. S. Lee’s result concerning alternating links, [8],
which describes the result of computing the spectral sequence for the axis filtration: the
homology will be supported on the lines j − 2i = −σ(L) ± 1. It is towards a variation of
this result that we now aim. Note, however, that our result is not just about supports. We
return to this at the end of the proof.

Assume that L admits an alternating projection to A which is connected as a subset of
A. We maintain the assumption that L intersects the spanning disc for B in an odd num-
ber of points; however, we will relax this when it is to our advantage. We will bi-color the
plane according to the following convention:

For any L, regardless of the parity of intersecting the spanning disk, we define M(L) to be
the number NW −NB where NW is the number of white regions intersecting the projection
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of B and NB is the number of black regions. When L intersects the spanning disc in an
odd number of points, M(L) = 0; for an even number of points M(L) = ±1. This number
does not change under Reidemeister moves applied to L, nor does it change when crossings
of L are resolved. Furthermore, all the projections, DS , in the spanning tree complex will
be alternating. We start with a lemma concering these unknots

Lemma 6. For each alternating twisted unknot in Figure 1 the homology H i;jk(L) satisfies
k − j + 2i = M(L).

We will show that diagrams of the special form above have the property that H i;jk satisfies
k− j+2i = M(DS), and that the last number is determined by the type of crossing on the
outermost boundary. We start with the following cases:

(1) L as a single non-trivial unknot has this property. Its homology is 0 unless (i; j, k) =
±(0; 1, 1), and those have homology F. But then k − j + 2i = 0 = M since there is
one black and one white region.

(2) If DS has the property that k − j + 2i = C so does DS ∪N where N is a disjoint
non-trivial circle.

(3) The closures of σ1 ∈ B2 and σ−1
1 ∈ B2 have the property that k − j + 2i = M(D).

This requires a computation. For σ−1
1 the shifted complex has homology

H i;jk ∼=

{
F−1 (j, k) = (−3, 0)
F0 (j, k) = (−3,−2), (−1, 0), (1, 2)

where the subscript denotes i, and each element has k− j + 2i = +1. Furthermore,
NW = 2 and NB = 1, so M(D) = 1. For the closure of σ1 we obtain:

H i;jk ∼=

{
F1 (j, k) = (3, 0)
F0 (j, k) = (−1,−2), (1, 0), (3, 2)

and k − j + 2i = −1 = M(D).

The nontrivial unknot, and the closures of σ1 and σ−1
1 , are the base cases for our induc-

tion. We now assume that we have a twisted unknot of the special type above, which has
σ(L) = 0. See Figure 4 and Figure 5 to clarify the notation. We start by assuming that
near the inner point where B crosses the plane the twisting is right-handed. Assume that
there are n > 1 negative crossings, and call this knot I−n . If we 0 resolve the innermost
crossing we obtain I−n−1,

while if we 1 resolve the crossing we obtain N ∪ I+. Let [s]{(t, 0)} be the contribution
to the final shift of I−n arising from the crossings not involoved in this twist region. There
is then a long exact sequence

−→ H∗(I+ ∪N)[−s]{(−t, 0)}[n− 1]{(2n− 2, 0)}[1]{(1, 0)} −→

H∗(I−n )[−s+ n]{(−t+ 2n, 0)} −→ H∗(I−n−1)[−s+ n− 1]{(−t+ 2n− 2, 0)} −→

where the sequence arises from 0 → 1 resolution maps in the unshifted complexes. The
additional shifts for H∗(I+ ∪N) come from its arising in the 1 resolution and from the ad-
ditional negative crossings introduced from the twists needed before the resolution change.
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B n crossings

I
−

n

0 1

B

n − 1 crossings

I
−

n−1

B

N

B

N

I
+

Figure 4. A depiction of I−n for n > 1, and the corresponding I+, as it
occurs in the resolution tree for the innermost crossing

.

Those for H∗(I−n−1) come from the negative crossings remaining in the resolved diagram.
The maps two internal maps are degree preserving. If k − j + 2i = C for the shifted
complex for I−n then k − j + 2i = C + t − 2n + 2 − 2s + 2n − 2 = C + t − 2s. Reversing
the shift for H∗(I−n ) we obtain that elements mapping to the homology for I−n−1 satisfy

k − j + 2i = C + t − 2s − 2n + t + 2n + 2s = C. By assumption, C = M(I−n−1) and

M(I−n ) = M(I−n−1) since there has been no change in the black/white region count. On

the other hand, M(I+) = M(I−n ) − 1 since we have lost the interior region, necessarily
white by our crossing assumption. Since the addition of N does not change k − j + 2i, if
k − j + 2i = M(I+) for I+, we see that the terms in the unshifted complex for I+ satisfy
k−j+2i = M(I+)+t−1−2n+2+2(−s+1+n−1) = M(I+)+t−2s+1. Applying the shifts
to get the shifted complex for I−n prodeuces elements with k−j+2i = M(I+)+1 = M(I−n ).
Every element in the image of H∗(I+ ∪ N) will also have the desired property. Thus by
induction, the property will be true also for I−n .

This leaves the case where n = 1. The 1 resolution occurs in the same way and we
may draw the same conclusion. However, for the 0 resolution a large collapse can occur. If
I+ has m ≥ 1 positive crossings in the next region, the 0 resolution allows us to untwist
all of these until we get to J−. The complex for J− is thus shifted by {(−m, 0)} when
injected into that for I−1 . This implies that k − j + 2i increases by m in the unshifted
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I
−

1

B

10

B

I
−

1

B

I
+
m

N

m crossings

B

J
−

Figure 5. A depiction of I−1 , I+ and J−, as they occur in the resolution
tree for the innermost crossing

complexes. In the shifted complexes, I−1 is shifted [−1]{(m − 2, 0)} more than J−. That
shift reduces k− j+2i by 2−m−2 = −m. Thus after the final shift there is a difference of
0. But note that the resolution eliminates both a black and a white region and thus leaves
M(J−) = M(I−1 ). All told, if k − j + 2i = M holds for the knots with fewer crossings and
the innermost crossing is negative then it also holds for I−n .

A similar argument can be deployed for the case where the innermost crossing is posi-
tive. Alternately we can appeal to the symmetry under reflection to switch the two cases.
Since this switches the black and white regions, it also multiplies M by −1. ♦

Thus for every unknot in our collection we have k − j + 2i = M(K) for every generator in
the homology. In particular, (j, k) determines i. Note that this conclusion remains valid if
we add a single marked non-trivial circle. It also remains true if we shift by [−w]{−2w}. As
with the original proofs of the alternating links property, the value of r(S) is the same for
every complete smoothing in K1(L), depending only on the number of black regions and the
crossings joining them. So all the generators for the spanning tree model of the unshifted
homology satisfy k− j + 2i = r(S) after the [r(S)]{(r(S), 0)} shifts and the odd number of
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intersections. The final shift of the diagram for L is [−n−]{(n+−2n−, 0)} and produces gen-
erators satisfying k−j+2i = r(S)−n+. From [8], we have that r(S)−n+ = σ(L). Thus, after
the final shifting, every generator in the spanning tree complex satisfies k − j + 2i = σ(L)
and since the differential in the spanning tree complex also preserves (j, k) and increases
i, this is also the homology. For those generators which survive the spectral sequence to
the Khovanov homology, we also have that j− 2i = −σ(L)± 1. Thus, for these generators,
k = ±1.

A comment about supports: Wehrli’s argument produces an unshifted chain com-
plex which has the same chain groups for l + r = i and 2l + r ± 1 = j where r = r(S) is
constant. Thus j − 2i = −r± 1 which when shifted yields j − 2i = −σ(L)± 1. For a given
q-grading, j, there are two i gradings differing by 1. Thus there can still be non-zero terms
in the differential, which may result in torsion or vanishing homology groups, and thus the
homology is at most supported on these lines. In our case, these groups are distinguished
by their k-value, which is also preserved by the differential. The issue of torsion returns in
the spectral sequence, but it is known that at most 2r-torsion occurs for alternating knots,
[15], and so working over F2 will correct it.

5. Resolutions in knot Floer homology

We now leave the Khovanov skein homology to establish some results linking it to knot
Floer homology. The two will intertwine in later sections.

Assume that L intersects a spanning disc for B generically in an odd number of points.
Let R be a complete resolution of the crossings in P. Of the closed curves in P(R), some
number, m, are geometrically split from the axis, B. The remainder, l, form an unlink
each of whose components link the axis one time. For such a link of unknots, the double

branched cover is easily computed to be #l+m−1S1 × S2. Moreover, B̃(R) is still a knot
since each unknot which is split from B intersects a disc generically an even number of

times. This knot is #
l−1

2 B(0, 0) ⊂ #l+m−1S1×S2 (and the unknot in #mS1×S2 if l = 1)
where B(0, 0) ⊂ S1×S2#S1×S2 is the knot obtained by performing 0 surgery on any two
of the three components of the Borromean rings. Hence,

ĤFK(B̃) ∼= V ⊗(l−1) ⊗W⊗m

where V ∼= Z( 1

2
, 1
2
) ⊕ Z(− 1

2
,− 1

2
) and W ∼= Z( 1

2
,0) ⊕ Z(− 1

2
,0). Here the first term in the sub-

script is the rational grading, whereas the second term is the filtration. Since l − 1 is
even, the filtration levels are in fact integers. Furthermore, the homology is entirely sup-
ported in the trivial Spinc structure. Note that there are no higher differentials in the
knot Floer spectral sequence. All we have done is compartmentalize in a new manner the
Heegaard-Floer homology of #l+m−1S1×S2. It is the latter which is associated to R in [12].

We wish to define an isomorphism

ΦB(R) : ṼL(R)
∼=
−→ ĤFK(Σ(P(R)), B̃)
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for any complete resolution R. However, a slight mismatch arises: the knot Floer homology
of the binding implicitly corresponds to marking a non-trivial circle. This cannot always
be arranged in the skein homology theory. We rely upon a trick to resolve this problem:
we introduce two non-trivial circles into L which link B once and otherwise do not interact
with the diagram. These should be considered innermost circles. We always mark the
innermost one (we need two to keep the binding connected) and since this circle does not
include any crossings, it will be the marked circle throughout.

The effect on the double cover of changing L to L′ is to replace Σ(L) with Σ(L)#2S1 × S2

and to replace B̃ with B̃#B(0, 0). We see this by shrinking the two new components to
nearby meridians of B and then examining the double cover of a small ball which includes
them and an arc on B. The effect of these connect sums on the Heegaard-Floer homology is
well understood. In particular, since B(0, 0) induces an entirely collapsed spectral sequence
for the Heegaard-Floer homology, we will be able to read off any information about the knot

Floer homology of B̃ from that of B̃#B(0, 0). It would be nice to avoid the introduction
of new components, but doing so only adds a slight increase in complexity.

With this alteration, order the circles in P(R) by the marked circle first, then all the

non-trivial circles, then all the trivial circles. An element of Ṽ (P(R), B) is encoded as
+ ⊗ v1

± ⊗ · · · ⊗ w
n
± and is mapped to γi1 · · · γik · Θ

+ where {i1, . . . , ik} are the indices for

the minus signs on non-marked circles, γj is the first homology class dual to the jth sphere,

and Θ+ is the highest degree generator of ĤF (Σ(P(R))). In particular, a representative
for γj in F2-homology can be found by lifting an arc between the marked circle and the jth

circle.

6. Filtering section 6 of [12]

Next we associate maps in the knot Floer homology to the changes in resolutions at cross-
ings. In our case, these maps become maps between filtered groups. We work backwards
from the maps in [12].

First, we note that the resolution changes occur in three ways: between circles split from
the axis, between circles linking the axis, and between circles of mixed linking. The first
occur precisely as in [12] due to the local nature of the surgeries in the double cover and
the connected sum decomposition of the covering manifolds. In particular, the maps for the
filtered theory are just the maps for the unfiltered theory tensored with the identity on the
tensor products of the V -vector spaces. Hence they reflect the differential of the reduced
Khovanov homology.

Now consider a resolution change joining two circles which link the axis. In the double
cover, this corresponds to a cobordism which involves 0-surgery on a curve which is homo-
logically non-trivial and intersects only those spheres intersecting the binding. Such a cicle
is isotopic to a circle in a fiber of the open book determined by #B(0, 0) before connect
summing with extra S1 × S2’s. Moreover, since the circle is the lift of an arc between
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two branch points, it is homologically non-trivial in the fiber. Ignoring the choice of basis
implicit in the above description, we can calculate the effect of such a surgery by looking at
the standard picture of B(0, 0) and doing 0 surgery on a meridian of one of the 0-surgered
components of the Borromean rings. When we connect sum with copies of B(0, 0) we obtain
a diffeomorphic picture to the one described above. We then use homology classes to pin
down the maps in the original picture. In the unfiltered version, the model calculation uses
the following long exact sequence (which must split as depicted due to ranks and gradings).

· · · F 1

2

⊕ F− 1

2
F1 ⊕ F2

0 ⊕ F−1
F 1

2

⊕ F− 1

2
· · ·....................................................................................................................................................

.....
..
..
..
.

−1
2

............................................................................................................

.....
..
..
..
.

.................................................................................................................

........
..
..
..
..
.

−1
2

............. ............. ............. ............. ............. ............

.....
..
..
..
.

0
.............................................................................................................................................................................

.....
..
..
..
.

−1
2

In the identification with Khovanov homology, the F1 term corresponds to v+ ⊗ v+ and it
thus maps to w+. The term mapping to F− 1

2

in the surjection is the image under ν2 of

F1 where ν2 is the meridian we do not surger. Meanwhile the image of ν1 is annihilated.
Transfering back to the basis from the resolution, this tells us that γ1 + γ2 generates the
kernel, and γ1 and γ2 are mapped isomorphically to γ′. Transfering back further to Kho-
vanov’s notation, we get γ1 → v− ⊗ v+ → w− ← γ′ and v+ ⊗ v− → w−.

For the filtered version, we obtain the model long exact sequence which filters the above
one:

· · ·

F−1

F0 ⊕ F0

F1

F 1

2

⊕ F− 1

2

F− 1

2

F 1

2

⊕ F 1

2

F 3

2

· · ·

...................................................................................

.....
..
..
..
.

..................................................................
.......................................

....
...
..
..
..
..
..
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
....

.

.

.

.

.

.

.

.

....

..

..

..

..

..

..

..

...

...

...
...
...
....
.....
.......
................................

..................................................................
.
..
.
.
.
.
.
.
.
..
..

.

.

.

.

.

.

.

.

..
..

............................................................

.....
..
..
..
.

........................................................................................

.....
..
..
..
.

...................................................................................

.....
..
..
..
.

..........................................................

.....
..
..
..
.

........................................................................................

.....
..
..
..
.

The first term is the knot Floer homology of B(0, 0); the second is the knot floer homology
of the unknot in S1 × S2 which we obtain after the 0-surgery on the meridian; the third
term is the result of +1-surgery on the meridian, B(0,−1) in the notation of [11]. The
grading and ranks again determine the filtered maps on the first page. When we join two
curves which link the axis, we obtain one which does not link the axis. This can be seen
by considering the possible winding numbers for the result: 0 or 2. However, the result
is a Jordan curve in the plane and thus cannot have winding number 2 about the origin.
Working back through the basis transformations as before, these correspond in our notation
to the maps v+ ⊗ v+ → 0, v+ ⊗ v− → w−, v− ⊗ v+ → w− and v− ⊗ v− → 0.

Finally, the model calculation in the cases of joining a linked with an unlinked circle corre-
sponds to the map in the following diagram:
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000

v1

v2 w1

ν

˜
B

The surgery circle, ν, annihilates γ1 + γ2 again in mod-2 homology. The result of the
resolutioin change is now a circle which links the axis. The relevant cobordism map is from
B(0, 0)#S1×S2 → B(0, 0) and corresponds to v+⊗w+ → v+, v+⊗w− → 0, v−⊗w+ → v−
and v− ⊗ w− → 0. This can be seen from the following graded exact sequence:

· · ·

F− 3

2

⊕ F− 1

2

F2
− 1

2

⊕ F2
1

2

F 1

2

⊕ F 3

2

F−1

F2
0

F1
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F2
0
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.................................................................

.....
..
..
..
.

.........................................................................

.....
..
..
..
.

...................................................................................

.....
..
..
..
.

............................................................

.....
..
..
..
.

.................................................................

........
..
..
..
..
.

.........................................................................

.....
..
..
..
.

..............................................................................

........
..
..
..
..
.

...................................................................................

.....
..
..
..
.

........................................................................................

........
..
..
..
..
.

............................................................................................................

.....
..
..
..
.

.................................................................................................................

.....
..
..
..
.

.................................................................................................................

.....
..
..
..
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where F 3

2

corresponds to v1
+⊗v

2
+⊗w+ and is mapped to v1

+⊗v
′
+, taking into account both

0-framed knots in the Borromean rings. Note that a w− always forces the map to be 0.

Due to the introduction of the two new components we do not need to examine what
happens if one of the circles is the marked circle: a division or merging never includes the
marked circle.

Similar considerations, or duality, establish the maps for the case of splitting a circle into
two circles. Note that the above maps are from +1 resolutions to 0 resolutions. This force
us to use the mirror of L in establishing the relationship between the knot Floer homology

of B̃ and the reduced skein homology.

Proposition 6.1. Let P be a projection for L
′
∪ B. Let R be a choice of resolution for

each crossing of L
′
. Then there is an isomorphism

ΦB(R) : Ṽ (P(R), B)
∼=
−→ ĤFK(Σ(P(R)), B̃)
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Let R′ be a resolution found by changing a single smoothing in R from 0 to +1. Then the
following diagram commutes

ĤFK(Σ(P(R)), B̃) ĤFK(Σ(P(R′)), B̃)

Ṽ (P(R), B) Ṽ (P(R′), B)
.
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.................................................................
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..
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..
.

F̂R<R′

...........................................................................................................................................................

.....
..
..
..
.

d
L

where F̂R<R′ is the cobordism map for the knot Floer homologies induced by the surgery
corresponding to the resolution change, and d

L
is the differential in the skein homology.

This square is a Z-direct sum of squares where the index corresponds to the filtration of
the knot Floer homology and the k index in the skein homology (with F = k

2 after the final
shifts).

7. The knot Floer homology spectral sequence

Let L = L1∪ . . .∪Ln be a framed link in a three manifold Y . Following section 4 of [12] we
let R = (m1, . . . ,mn) where mi ∈ {0, 1,∞} and Y (R) be the result of fr(Li)+mi µi surgery
on each Li where µi is the meridian of Li and ∞-surgery is µi-surgery. We let 0 < 1 <∞
define a lexicographic ordering on {0, 1,∞}n and call I ′ and immediate successor to I as
in [12]: all the m′

j are the same as mj except for one where m′
i > mi, excluding the case

(m′
i,mi) = (∞, 0). Then to each immediate successor I ′ of I there is a map

FR<R′ : ĤF (Y ) −→ ĤF (Y ′)

arising from the associated two handle addition.

According to section 8 of [11], two handle additions attached in a way algebraically un-
linked from a knot induce maps on knot Floer homologies. Viewed differently, the knot
turns the chain map above into a filtered morphism for the filtered homology groups. The
“top” levels of these filtered morphisms form exact sequences which specialize to the skein
exact sequence. Following these thoughts leads to

Proposition 7.1. Let L = L1∪ . . .∪Ln be a framed link in (Y,K) such that lk(Ls,K) = 0
for all s. For each integer k, and surface F spanning K and disjoint from L, there is a
spectral sequence such that

(1) The E1 page is ⊕R∈{0,1}nĤFK(Y (R),K, k)

(2) The d1 differential is obtained by adding all F̂R<R′ where R′ is an immediate suc-
cessor of R

(3) All the higher differentials respect the dictionary ordering of {0, 1}n, and

(4) The spectral sequence eventually collapses to a group isomorphic to ĤFK(Y,K, k).

Proof: Combine section 8 of [11] with section 4 of [12] to construct a complex X which
records the maps induced from the surgeries described above. Use the approach in section
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8 to adjust the maps in section 4 to reflect the additional basepoint. Use lemma 8.1 of [11]
to ensure that the maps are filtration preserving. It is noted in [11] that the various chain
homotopies are also filtration preserving. This allows us to use the lemma found in the
appendix, a filtered version of proposition 4.4 in [12]. Now check the model calculations in
section 4 of [12] to see that they still cancel appropriately, a result of the linking number
vanishing. The argument in Theorem 4.7 establishes the result when L consists of a single
component. For the induction in the proof of Theorem 4.1 of [12] we note that the adjusted
statement is that E1(X) and E1(X(S)) are isomorphic to 0, by applying the stated reasons
to the E1 maps. This allows us to repeat the induction and conclude that the the knot
Floer complex is filtered quasi-isomorphic to an iterated mapping cone, namely the analog
of the surgery complex built in [12], which will be denoted X(L). ♦

We consider the link in a connect sum of S1 × S2’s upon which we perform the surgeries
corresponding to the resolution changes. These are all algebraically split from the binding,
so the above proposition applies for the choice of framing coming from the crossing data.
Combining with the proposition from the previous section, and adjusting for the filtration
information, allows us to identify the E1-page with the skein homology complex. As in [12]
we may then conclude

Proposition 7.2. Let L be a link in A× I ⊂ R2×R as above. There is a spectral sequence

whose E2 term is isomorphic to the reduced Khovanov skein chain complex of L
′
in A×I with

coefficients in F2 and which converges to ⊕k∈ZĤFK(Σ(L)#2(S1 × S2), B̃#B(0, 0), k,F2).

By splitting according to the filtration data we can obtain the slightly stronger

Proposition 7.3. There is a spectral sequence whose E2 term is isomorphic to the sub-

complex of the reduced Khovanov skein complex of L
′
generated by the enhanced states with

Ψ(S) = 2k and which converges to ĤFK(Σ(L)#2(S1 × S2), B̃#B(0, 0), k).

In fact, by taking the direct sum of all the groups for the knot Floer homologies over all the
resolutions we can obtain a bi-filtered complex, filtered by the pair (I,Ψ), where the E1

term corresponds to the filtration of the bi-filtered reduced Khovanov homology complex.
Using the graded objects for just the Ψ filtration and taking their homology produces the
first proposition above. The additional terms in the maps in the Khovanov complex induce
maps in the E2 level of the spectral sequence using the Ψ filtration, since these correspond
to terms in the filtered cobordism maps between the Heegaard-Floer homologies. These
maps fit together to provide a filtered version of the spectral sequence in section 4 of [12]
with K inducing the filtration. Additional pages ultimately calculate the Heegaard-Floer
homology of the branched double cover.

More can be concluded from the proof outlined above and the homological algebra in the
appendix.

Lemma 7. For each r ≥ 1, the Er page of the spectral sequence for ĤF (Σ(L)#2(S1×S2))

computed from ⊕k∈ZĤFK(Σ(L)#2(S1 × S2), B̃#B(0, 0), k,F2) using the differential from
the knot Floer homology is quasi-isomorphic to the Er page for the filtered complex X(L),
computed using the maps induced from the link surgeries spectral sequence above.
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Thus, the values of Ψ will filter the Heegaard-Floer homology groups of the double branched

cover in a way corresponding to that induced by the spectral sequence for B̃ (namely, the
associated graded groups will be isomorphic).

8. Transverse links, open books and contact invariants

First, we note that

Theorem 1. Any transverse link is transversely isotopic to a braid closure. Furthermore,
two braids represent transversally isotopic links if an only if one can be obtained from the
other by conjugations in the braid group, positive Markov moves, and their inverses.

This is the culmination of work by Bennequin for the first part, and by V. Ginzburg, S.
Orevkov, and N. Wrinkle, who independently proved the second part. We will replace the
contact structure with an open book. The standard contact structure on S3 is supported by
the open book with unknotted binding and discs for pages. In the braid picture, this cor-
responds to including the axis of the braid, which is an unknot. When we take a branched
cover of a transverse link, the contact structure lifts to a contact structure in the cover
where we use a Martinet contact neighborhood of the transverse link. In the open book
picture, this contact structure is supported by the pre-image of the open book, whose fibers
are now more complicated, but whose binding is the lift of the axis. This follows since
the lifted contact structure remains C0-close to the pages of the open book, and transverse
to the binding. We call this contact structure ξ. The contact structure on #2

(
S1 × S2

)

induced by the fibered knot B(0, 0) will be denoted ξ0.

For a braid, O. Plamenevskaya, [13], [14], defines a cycle, ψ̃(L), in the reduced Khovanov
homology chain group. First she resolves all the crossings in the direction of the oriented
braid. This constructs the maximal number of non-trivial loops in the skein algebra per-
spective. She then labels every one of the unmarked strands with a − and the marked
strand with a +. This enhanced state is closed in the reduced Khovanov homology theory,
[14].

Let L be a braid whose closure is the transverse link.

Theorem 8.1. Suppose L intersects the spanning disc for B an odd number of times.

Then the element ψ̃(L′) is closed in the skein Khovanov homology and represents the unique
homology class with minimal Ψ-grading. Under the correspondence with the E2 term of the
spectral sequence converging to knot Floer homology, it maps to an element which survives

the spectral sequence and generates ĤFK(−Σ(L)#2
(
S1 × S2

)
, B̃#B(0, 0),−1 − g(B̃)) ∼=

F2. Upon mapping this last group into ĤF (−Σ(L)#2
(
S1 × S2

)
), ψ̃(L′) corresponds to the

contact element c(ξ#ξ0).

Note: The correspondence at the end is not the same as first mapping ψ into the reduced
Khovanov homology and then considering the spectral sequence from it to the Heegaard-
Floer homology of the branched double cover.

Proof: There is only one element in the skein chain group which has Ψ = −2g(B̃#B(0, 0))
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and that is Plamenevskaya’s element. For if b is the braid index of L′ then Euler charac-

teristic calculations imply that 1 − 2g(B̃#B(0, 0)) = 2 − b and thus Ψ must equal 1 − b.
This can only happen when all the crossings are resolved in the direction of the link so
that there are b non-trivial circles and precisely one circle (the marked one) is adorned

with a + sign. ψ̃(L′) is characterized as the unique enhanced state with minimal value for
Ψ(S) and thus generates the homology in this f -grading. This enhanced state survives in
the spectral sequence for the knot Floer homology of the binding and yields in the limit a

generator of ĤFK(−Σ(L′), B̃#B(0, 0),−g(B̃#B(0, 0))) ∼= F since it is the only generator
in the filtration level.

The branched cover of B over L′ is B̃#B(0, 0) which supports the contact structure

ξ#ξ0. The contact element c(ξ#ξ0) is the image in ĤF (−Σ(L′)) of the generator of

ĤFK(−Σ(L′), B̃#B(0, 0),−g(B̃#B(0, 0))). Lemma 7 guarantees that this generator cor-

responds to the −g(B̃#B(0, 0)) level of the associated graded group for ĤF (−Σ(L′)). This
level is either ∼= F or ∼= 0 depending upon whether the contact element vanishes. Thus,
Plamanevskaya’s element converges to the contact element in the Heegaard-Floer homology
(with F2 coefficients). ♦

Corollary 1. Under the correspondence in the previous theorem, ψ̃(L) corresponds to c(ξ) ∈

ĤF (−Σ(L),F2).

Proof: If L intersects the spanning disc for B an even number of times, use a positive

Markov move to increase the number of strands by 1. ψ̃(L) is mapped to ψ̃(L+), [14],
under this move. Meanwhile, in the double cover this corresponds to positively stabilizing
the open book, and thus does not change the contact invariant. Renaming L+ by L we may

now assume L intersects the spanning disc an odd number of times. Furthermore, ψ̃(L)

clearly corresponds to ψ̃(L′) in a precise way. Using the previous theorem we have that

ψ̃(L′) maps to c(ξ#ξ0) under the spectral sequence and c(ξ#ξ0) = c(ξ) ⊗ c(ξ0). Adding
the two meridional strands tensors both homologies with V ⊗2. Thus, c(ξ) in the knot

Floer homology of B̃ corresponds to Plamenevskaya’s element in the skein homology of L

since both are alterred in the same formal manner by the introduction of the new strands. ♦

We now turn to proving a the non-vanishing result mentioned in the introduction. We
begin with a lemma:

Lemma 8. Let C be a bifiltered complex over a field. Then up to isomorphism there is a
unique bifiltered complex C′ such that

(1) C′ is bifiltered chain homotopy equivalent to C
(2) C′ij

∼= H∗(Cij)

(3) The differential d′ =
∑
d′ij on C′ has d′00 = 0, and induces the same spectral se-

quences for both filtrations.

Proof: Use the cancellation lemma as per sections 4 and 5 of Rasmussen’s thesis, but only
for those elements with the same bifiltration indices. ♦
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We note that since the knot Floer spectral sequence for #kB(0, 0) collapses at E2, the
use of the above lemma for the I-filtration means that ⊕jC

′
ij is isomorphic to the knot

Floer homology for the summands in the cube complex corresponding to that I-value. In
particular, there are no differentials keeping I fixed, and reducing Ψ. For lack of a better
name, we will also call this reduced complex X(L), or just X. As a result, E1

I (X) ∼= X for
the filtration from I. Since X is bi-filtered chain homotopy equivalent to X(S), it too is

quasi-isomorphic to the chain complex for ĈF (−Σ(L)) by a Ψ-filtered map.

We begin with a little notation: we letXj be the sub-complex ofX with Ψ ≤ j. Likewise, let
Kj be the sub-complex of the reduced Khovanov homology with the same condition. Now
the I-filtration – from the flattened cube– filters these sub-complexes and their quotient
complexes.

Corollary 2. Suppose there exists a n such that

(1) ψ(L) is exact in Kn

(2) The I-induced spectral sequence on Xn/X−2g collapses at E2.

then c(ξ) = 0.

The second condition, of course, makes some complex computed from the knot Floer chain
groups isomorphic to the corresponding complex computed from the skein Khovanov chain
groups2

Proof: Suppose ψ(L) has the bifiltration value (Iψ,−2g). If we try to compute the ho-
mology of Xn using the I-filtration, then ψ generates the only group in the Ψ-filtration
level −2g. Since ψ is exact in Kn, there is some element with I-filtration Iψ − 1 whose
differential in Kn is ψ (recall the differential increases I-values). This element, ν, may be
a linear combination of elements with many different Ψ values. We note that ν is closed
and not exact in E1(Xn/X−2g) as a chain complex computing E2. It is closed since the
only non-zero portion of ∂Khν is in X−2g. It is not exact since it would need to be the
differential of something with higher I-filtration, and for those elements the differential,
which is given by the Khovanov differantial, is the same as in E1(Xn); however in E1(Xn),
ν is not closed and hence is not exact. Thus [ν] will be non-zero in E2(Xn/X−2g).

Consider Ci to be the sub-complex of Xn with I-filtration greater than or equal to i. We
have the commutative diagram represented in Figure 6, to which the remaining argument
refers. Here F is the homology of X−2g, Qc is the quotient complex of Xn by CIψ+1 and Q
is the quotient complex by {Ψ ≤ −g} ∪ {I ≥ Iψ + 1}. The 0 in the upper left comes from
the observation that there are no generators in X with Ψ ≤ −2g and I ≥ Iψ + 1. The 0 on
the map in the upper right indicates that it will generate the trivial map in homology due
to ν. From now on we let X ′ = Xn/X−2g.

2In an earlier version of this paper, the author incorrectly asserted that the vanishing of ψ is enough to
conclude that c(ξ) also vanishes. John Baldwin, [2], pointed out the error and has since discovered examples
where c(ξ) is non-zero despite ψ vanishing in the reduced Khovanov homology.
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Figure 6.

An element of H∗(Q) in filtration level Iψ − 1 must have non-trivial representative in
E2(Xn/X−2g). Furthermore, the argument above shows that [ν] 6= 0 in H∗(Q). This is
certainly true in Qc since ν has a non-trivial differential. However, if in Q there is an
element with differential equal to ν, the only other possibility is that in Qc this element
has differential equal to ν plus something in X−2g. But then ∂2 6= 0 on this element.

Suppose, [ν] has non-zero image, [ω], under the map H∗(Q) → H∗(CIψ+1). If [ω] has
non-zero image in H∗(Xn), from the middle row, then it too must have a non-zero repre-
sentative in E2(Xn/X−2g), since CIψ+1 has no representatives with Ψ-filtration −2g. But
then the induced differential from the long exact sequence implies that ∂[ν] = [ω] in X ′.
Hence, the rank of H∗(X

′) is strictly less than that at E2, i.e. there is a non-trivial differ-
ential beyond E2.

Given the assumptions, we must have [ω] = 0 in H∗(Xn). Then it is the image of some
non-zero element, [η] of H∗(Qc). This element injects into H∗(Q) so that [ν] minus the im-
age of [η] is the image of some non-zero element of H∗(X

′). Furthermore, since the image
of [ν] under H∗(Q) → F is non-zero, then the map H∗(X

′) → F is surjective. As a result,
the map F→ H∗(Xn) is zero, but this implies that H∗(X−2g)→ H∗(X) is zero.
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The filtered quasi-isomorphism from X to ĈFK induces a commutative diagram

H∗(X−2g) ∼= F H∗(X)

HFK(B̃,−g) ∼= F HF (−Σ(L))

.............................................................................................................................................................................
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∼=

thereby showing that the contact invariant vanishes. ♦

Note #1: The purpose of the F2 coefficients is to connect with the extant versions of
Khovanov homology. In the end, the crucial observation is that Plamenevskaya’s element
uniquely defines the lowest filtered portion of the both the skein and knot Floer homolo-
gies. As long as this remains true and there is an analogous reduced Khovanov homology,
the same argument will work with other coefficients. In particular, just changing the sign
conventions will not change the conclusion, but there should be some sign convention lifted
from the Heegaard-Floer world which will allow Z-coefficients.

Note #2: For a braid, L, we can lift a negative crossing or a positive crossing to neg-
ative/positive Dehn twists along homologically non-trivial curves in the fiber of the open
book. These, in turn, fit into the long exact sequences of Heegaard-Floer and knot Floer
homology. One sign fits into the ∞, 0,+1 sequence for the fiber framing, while the other
fits into the −1, 0,∞ sequence. Doing all the surgeries at the same time yields a spectral
sequence as in the previous section, with the maps in the E1 page coming either from the
maps ∞ → 0 or 0 → ∞ from the respective long exact sequence and converging to the
appropriate homology of the fibered knot. This is the same sequence as that constructed
above, only the basis for the framings has been alterred. Namely, if the framing from the
crossing is declared ∞ and the crossing is negative, then the 0 framing is ∞ in the fiber
framing, and +1 is 0 in the fiber framing. The knot for the surgery is the same, a lift of an
arc between two branched points.

We now collect some results for quasi-positive braids. We note that for a quasi-positive
braid, the lifted contact structure is Stein fillable. We can use the above argument to re-
prove that the induced contact element is non-vanishing, [10]. Let the braid be given by
w1σi1w

−1
1 · · · wkσikw

−1
k . We resolve only those crossings corresponding to the σik terms.

For the 00 . . . 0 resolution, the result will be b non-trivial circles. Any 1 resolutions make
the situation more difficult, but all the non-zero terms occur in higher filtration levels.
Plamenevskaya’s element is then in the lowest level of the 00 . . . 0 resolution. There is no
possibility in the spectral sequences of a higher differential landing at this spot as they must
all map to enhanced states with at least one 1 in their code. Thus the element survives in
this spectral sequence. We now note that when there is a 1 in the code, and the resulting
resolution does not consist of unlinked circles, that the Heegaard-Floer homology of its
double cover is, as a filtered group, the limit of a spectral sequence. Combining all of these
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shows that Plamenevskaya’s element survives in the spectral sequence and thus gives the
non-triviality of the contact element in the double branched cover.

9. Knot Floer results for alternating branch loci

We now explore the implications of the previous sections for knot Floer homology. First,
we define some notation. Let L be a link in A × I admitting a connected, alternating
projection to A. According to [12], the Heegaard-Floer homology of Σ(L, s) is congruent to
F for each of the Spinc structures on Σ(L). For a Spinc structure s and a null-homologous
knot K ⊂ Σ(L) define

τ(K, s) = min
s∈Z

{
s : ĤF (Fs, s)

i∗−→ ĤF (Σ(L), s) is nontrivial
}

where Fs is the sub-complex of generators with filtration index less than or equal to s.
Using the results of the previous sections and Lemma 7 we can prove

Theorem 9.1. Let L be a non-split alternating link in A× I intersecting the spanning disc
for B in an odd number of points. Then for each k there is an isomorphism

ĤFK(−Σ(L)#2
(
S1 × S2

)
, B̃#B(0, 0), k) ∼=

⊕

i,j∈Z

H i;j,2k(L)

where, for each Spinc structure, the elements on the right side all have the same absolute
Z/2Z-grading. Together these isomorphisms induce a filtered quasi-isomorphism from the
E2-page of the knot Floer homology spectral sequence to that of the skein homology spectral
sequence. Thus the knot Floer spectral sequence collapses after two steps. Furthermore, for
any s ∈ Spinc(Σ(L)) we have that

τ(B̃, s) = 0

where B̃ is considered in Σ(L).

The content of this theorem is that all the knots B̃ have the same knot Floer properties
as alternating knots in S3, and their knot Floer homology (over all Spinc structures) is
determined by the skein homology, and the Göretz matrix of L, when applicable. The
last is used to calculate the signature, through a formula of C. Gordon and R. Litherland,
and the Heegaard-Floer invariants, d(s), for s ∈ Spinc(−Σ(L)), [12], which determine the
precise absolute grading for the homology groups. However, it seems difficult to recover
data about individual Spinc structures from the Khovanov formalism.

Proof of theorem 9.1: We have established that there is a spectral sequence starting
at the right side of the isomorphism and converging to the left side. The right side is the
E2 page of this spectral sequence. The E3 page is computed using maps between resolutions
differing in at least two positions. Thus the maps will necessarily increase the i grading by
2. However, the right side is supported in those triples satisfying k− j+ 2i = σ(L). If i in-
creases by δi and k stays fixed, then j must increase by 2δi. We compare this to the grading
in the knot Floer cubical spectral sequence which reflects the absolute grading shifts in the
long exact sequences. For example, in the Heegaard-Floer long exact sequence for surgery
on an unknot, we have Z0 → Z− 1

2

⊕Z 1

2

. Thinking of this as arising from a 0→ 1 resolution
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change, we would shift the right side so that the q-gradings would be preserved. In our
case, we would shift up by 1

2 . In general, q corresponds to a shift by 1
2 in the absolute grad-

ings. In the mapping cone construction, we shift the right side down by 1 so that the chain
map contributes to a −1 differential. Due to all our three manifolds being connect sums
of S1 × S2’s and our surgery circles as either creating or destroying one of the summands,
this same calculation can be applied throughout the cubical complex to obtain a coherent
relative grading. Keeping track of the shifts yields that we can measure the relative grading
in Heegaard-Floer homology by ∆ j

2 −∆ i where ∆ is a change in the specified index. For

this grading the differential at the E1 page is a −1-differential. More importantly, once
we are at the E2 page, if we fix k and consider triples with k − j + 2i = σ(L) we see that
the relative grading is 0 between generators on this plane. All higher differentials must be
−1-differentials, so the spectral sequence collapses in each k grading at E2. After the E2

page if ∆ j
2 −∆ i = −1 then ∆ k = −2. Note that this is the shift in the additional terms

defining the spectral sequence converging to Khovanov homology.

This is not the difference in the absolute gradings on −Σ(L) as the Spinc structures have
different invariants, d(s). However, it does return the difference between g̃r(x)−d(s)−1 for
generators corresponding to s(x) = s. To do this measure from the element which generates

ĤF (−Σ(L), s) tensored with Θ++ ∈ ĤF (#2
(
S1 × S2

)
). The first must exist in a single

(i, j)-pair by the results of E. S. Lee, [8], and the comments in the next paragraph. Note

that the generator of ĤF (−Σ(L), s) lies in the even absolute Z/2Z-grading, and thus the
relative grading above will be correct for Euler characteristic calculations, up to sign.

The spectral sequence on the reduced skein homology collapses at its E2-term (the E3

term in the sequence we are considering in this proof). This follows from the fact that the
higher differentials in the Φ-sequence on the skein homology preserve j, and increase i by
1. If k − j + 2i = σ(L), then any non-trivial higher differential must reduce k by 2 only.

Cancelling these yields the Khovanov homology. At that stage we recover ĤF (−Σ(L)), as
the reduced Khovanov homology has total rank given by det(L). By Lemma 7, the spectral
sequence on the Khovanov skein homology is quasi-isomorphic to that on the knot Floer

homology of B̃#B(0, 0) in −Σ(L). This allows us to draw the conclusion concerning τ .

Namely, the Heegaard-Floer homology of −Σ(L)#2
(
S1 × S2

)
will have the form H̃ ⊗ V ⊗2

and will lie on four lines j−2i = −σ(L) (with multiplicity 2) and j−2i = −σ(L)±2. When
we factor out the V ⊗2, we have the reduced homology lying on k = σ(L)+ j−2i = 0. Since
there is only one grading in each filtration level in the knot Floer homology, this implies

that τ(B̃) = 0 from which the result follows. ♦

We can also derive some information about B̃ for the branch loci depicted in Figure 1,

regardless of whether L is alternating. In particular, B̃ ⊂ S3 in these cases and

Lemma 9. For B̃ coming from the branch loci depicted in Figure 1,

τ(B̃) = −
1

2
T (L)
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Proof: Add two non-trivial, non-interacting unknots to L and mark one of these. There

is then a spectral sequence converging to the knot Floer homology of B̃#2B(0, 0) from
H∗;∗∗(L) ⊗ V . Consider an element in the subcomplex corresponding to knot filtrations

less than or equal to τ(B̃) − 1 which maps to Θ−− ∈ ĤF (#2S1 × S2) under inclu-
sion of the subcomplex. Then there is a element with k-gradings less than or equal to

2τ(B̃) − 2 which survives the spectral sequence to the knot Floer homology . However,
since L is an unknot, Θ−− is the element u−1 ⊗ v−. Therefore, this same element will
survive the spectral sequence from the skein homology to the Khovanov homology. Hence

T (L)−2 ≤ 2τ(B̃)−2 and −1
2T (L) ≤ τ(B̃). This is also true for B whence −1

2T (L) ≤ τ(B̃).

Therefore, −1
2T (L) ≥ τ(B̃) as well. ♦

These results hold in slightly greater generality. In the sequel to this paper an argument is
given which holds for a broader class of links, similar to the quasi-alternating links of [12].
This is the smallest subset of links in A× I, denoted Q′, with the property that

(1) The alternating, twisted unknots, linking B an odd number of times, are in Q′.
(2) If L ⊂ A× I is a link admitting a connected projection to A, with a crossing such

that
• The two resolutions of this crossing, L0 and L1, are in Q′ and are connected
in A, and
• det(L) = det(L0) + det(L1)

then L is in Q′

The alternating L used above are in Q′, and the elements of Q′ when considered in S3 are
all quasi-alternating as in [12]. For this class of links Wehrli’s algorithm terminates at the
base cases of our induction, from which the conclusion in the theorem can be drawn. For
braids in Q′ we can be more precise about Plamenevskaya’s element:

Corollary 3. Let L be in Q′. If the element ψ̃ vanishes in the reduced Khovanov homology,
then c(ξ) = 0.

Proof: This corollary follows from the non-vanishing result in Section 8 since the spectral
sequence for X2−2g/X−2g collapses according to theorem 9.1. However we need to verify

that, ψ̃ is zero in Kh1−g. The only difficulty arises if there is a ν whose Khovanov differen-

tial is ψ̃ and ν =
∑
νi where νi is in Ψ-filtration level 2i. Since the Khovanov differential

reduces Ψ by at most 2, this requires the i indices to range from 1− g to l, and for there to
be a summand for each index in the range. As we collapse the complex along differentials
preserving the Ψ-filtration level, the complex stabilizes at E2, and the structure described

above yields a differential from νl to ψ̃. However, we know that at E2 k − j + 2i = σ(L),

and νl and ψ̃ must have the same j value since they are linked by Khovanov differentials.

In addition, the change in i is an increase of 1 from νl to ψ̃. This implies that k must
decrease by 2, and thus l = 1− g as required. ♦
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B L1 B

L2

Figure 7. The diagram for example 1 is on the left; that for example 2 is
on the right.

10. Examples

Example 0: Let L be a non-split alternating link and suppose B is a meridian of one of

the components. Then B̃ is an unknot in −Σ(L) since the spanning disc lifts to a disc.
Mark the link as above, then the reduced skein homology after the final shifting agrees
with the reduced Khovanov homology. On the other hand, the knot Floer homology of this

unknot is just ĤF (−Σ(L)) in filtration level 0. The equivalence of these two groups is a
consequence of [12]. In this sense, theorem 9.1 is a generalization of the result in [12].

Example 1: See Figure 7 for the diagram. Here L is an unknot in S3, so B̃ is a knot in
S3 as well. Untwisting and taking the branched double cover (or using symmetry between

the two components) shows that B̃ is the knot:

This is the alternating knot, 61, with signature equal to 0. The main result in [9] now
verifies the knot Floer conclusions of theorem 9.1. Furthermore, the Alexander polynomial
is −2T−1 + 5 − 2T . We content ourselves with a direct verification of the rank of the
highest filtration level. Only resolutions with three non-trivial circles contribute to this
level. These resolutions and the associated generators are:
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1

2

3 010

001

011

v+ ⊗ v+ ⊗ v+

v+ ⊗ v+ ⊗ v+

v+ ⊗ v+ ⊗ v+ ⊗ W

The maps from 010 and 001 to 011 both take v+⊗ v+⊗ v+ to v+⊗ v+⊗ v+⊗w−, and thus
their sum is closed, as is v+⊗ v+⊗ v+⊗w+. The latter is two q-gradings above the former
closed element, but it also has one more 1-resolution. Shifting q down by 2 decreases the
homological grading by 1 when identifying with knot Floer homology. Thus, these genera-
tors are in the same grading in the knot Floer complex. This confirms theorem 9.1 for the
highest filtration level (modulo some shifting).

Example 2: See Figure 7 for the diagram. Here L is the figure 8 knot, 41, whose branched

double cover is L(5, 2). In this arrangement, B̃ is a genus 1 fibered knot in L(5, 2). The
possibilities for such a knot are strictly limited, since there is only a Z in filtration levels ±1.

The real content of the theorem here is that τ(B̃) = 0, as this implies that there is one Spinc

structure where the knot Floer homology is that of 41. We give a non genus 1 example later.

The monodromy for this knot is
(
γ1γ

−1
2

)2
where γi is a positive Dehn twist around a

standard symplectic basis element for H1(T
2−D2). The monodromy action on H1 and the

Alexander polynomial associated to the Z-covering from the fibering are computed to be

A =

[
2 3
3 5

]
=⇒ det(I − tA)

.
= ∆ eB(t) = −T−1 + 7− T 1

where we have symmetrized and normalized det(I − tA) according to the convention in the
second appendix. We can compute the skein homology directly, but instead we use the
theory to compute it from the polynomial V (t, q, x). This is not quite as direct as it may
seem. The polynomial satisfies

V (t, q, x)/(qx+ q−1x−1) = t−2q−4 + t2q4 + 2 t−1q−2 + 2 tq2 + q2x2 + 1 + q−2x−2 + t1 + 1

From our conventions, we should add two non-trivial strands, and at the end factor out
V ⊗2 to get to the knot Floer homology. However, adding a marked non-trivial circle and a
non-trivial circle amounts to multiplying qx(qx+ q−1x−1)V (t, q, x), so will equal the above
after shifting and removing V ⊗2.

Note that the second to last term does not satisfy k − j + 2i = 0 and so should not
appear in the homology. It cancels with one of the 1’s. In fact, this can be seen by re-
solving crossings in turn, until one arrives at a the closure of σ2 ∈ B3, where we use the
homology calculation from previously (the same cancellation occurs there) and then build
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up the homology independently. When all is completed we obtain the following diagram
on the (j, k)-axes (the subscripts are the values of i).

−3

−2

−1

0

+1

+2

+3

+4

−3 −2 −1 0 +1 +2 +3 +4

F−2 F2
−1 F0 F2

1 F2

F−2

F2

Note that if we shift the elements to j = 0, decreasing i by 1 each time j decreases by 2,
every group in the same horizontal row shifts to the same grading. Note also that the ranks
after shifting horizontally reflect the coefficients of the Alexander polynomial; and, up to
a minus sign, the Z/2Z-gradings are correct. Furthermore, if we consider the Ψ-filtration,
in the E∞-page of the spectral sequence there will be five terms on the k = 0 horizontal
line, correponding to the five Spinc structures on L(5, 2). All that remains is to identify
which generators correpond to which Spinc structure and then use the Goeritz matrix for
41 to complete the absolute grading calculations. To do this we should use the more re-
fined torsion, τ̌(Y − K), in our Euler characteristic computations, [5]. We complete this
argument in the sequel to this paper. Comparing the two will show that the Z/2Z-gradings
from the knot Floer homology correspond to those from the skein homology. However, the
correspondence only occurs when we add over all Spinc structures and all q-gradings.
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Appendix A. Homological Algebra

All coefficients are taken in F2, hence the difference from the usual signs. However, every-
thing can be adapted to work with coefficients in Z.

Let (A,A) and (B,B) be filtered differential modules. Let f : A → B be a filtered chain
map. Then the mapping cone M(f) inherits a filtration by declaringMi = Ai ⊕ Bi. That
the differential preserves this filtration follows from f being filtered. When undeclared, a
filtration on a mapping cone complex will come from this construction. The definitions
imply that E1(M) ∼= MC(E1(f)).

A filtered chain map f will be a 1-quasi-isomorphism if it induces an isomorphism between
the E1 pages of the spectral sequences for the source and the target. For the morphism of
spectral sequences induced by f , in which the induced maps intertwine the differentials on
each page, this implies that all the higher pages, Er, are quasi-isomorphic by the induced
map, Er(f). This is probably weaker than f being a filtered chain isomorphism, but enough
for spectral sequence computations.

Let {(Ai,Ai)}
∞
i=0 be a set of filtered chain complexes with each filtration Ai being bounded

and ascending:

Ai : {0} = Anii ⊂ · · · ⊂ A
j
i ⊂ A

j+1
i ⊂ · · · ⊂ ANii

∼= Ai

Let {fi : Ai → Ai+1} be a set of chain maps satisfying:

(1) fi is a filtered map for each i.
(2) fi+1 ◦ fi is filtered chain homotopic to 0, i.e. there is a filtered map Hi : Ai → Ai+2

such that fi+1 ◦ fi = ∂i+2 ◦Hi +Hi ◦ ∂i.
(3) fi+2 ◦Hi +Hi+1 ◦ fi : Ai → Ai+3 is an 1-quasi-isomorphism.

In this setting we have the lemma, following [12],

Lemma 10. The mapping cone MC(f2) is 1-quasi-isomorphic to A4.

Proof: The hypotheses above guarantee that the maps in the proof of lemma 4.4 of [12]
are filtered maps. We need only check the filtering condition for maps in and out of the
mapping cone, but with the aforementioned convention these are clearly filtered. In partic-
ular the map ψi = fi+2 ◦Hi +Hi+1 ◦ fi is a 1-quasi-isomorphism by assumption, and the
same argument as in [12] implies that α2 is a quasi-isomorphism which is also filtered. This
is not quite enough to conclude, but it does ensure that αi induces maps at each page in
the spectral sequence.

The module Gr(Ai) ∼= ⊕j∈ZA
j
i/A

j−1
i inherits a differential which maps the jth graded com-

ponent to itself, whose homology provides E1. The maps fi induce chain maps between
these complexes for each grading level. Indeed each of the maps ψi, Hi, fi, etc., likewise
induce such maps. Compositions such as fi+1 ◦Hi induce maps on the graded components
which are the same as the compositions for the maps induced from fi+1 and Hi separately.
Thus for each j, we have the situation in the lemma in [12] applied solely to the jth graded
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component. Applying the lemma in each grading guarantees that the map induced in that
grading by α2 is a quasi-isomorphism, i.e. that the induced map on the E1 page is an
isomorphism of spectral sequences. Thus, α2 induces an isomorphism from the E1 page for
A4 to MC(E1(f2)) ∼= E1(MC(f2)), which is the desired result. ♦

As in [12], we can reinterpret this as a result on interated mapping cones. Let M =

MC(f1, f2, f3) be the filtered chain complex on A1⊕A2⊕A3, filtered by Aj1⊕A
j
2⊕A

j
3, and

equipped with the differential 


∂1 0 0
f1 ∂2 0
H1 f2 ∂3




That this is a differential is a consequence of the assumptions made before the lemma.
The lemma then implies that the induced spectral sequence on the iterated mapping cone
collapses at the E1 term. This follows according to the following diagram:

0 0 0

0 Aj3/A
j−1
3 M j/M j−1 MCj(f1)/MCj−1(f1) 0

0 Aj3 Aj−1
1 ⊕Aj2 ⊕A

j
3 Aj1 ⊕A

j
2 0

0 Aj−1
3 Aj−1

1 ⊕Aj−1
2 ⊕Aj−1

3 Aj−1
1 ⊕Aj−1

2 0
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where the top two rows are exact, and all the columns are exact. The nine lemma now
guarantees that the bottom row is exact, and each of the maps is a chain map. In the long
exact sequence from the bottom row, there is one map guaranteed to be an isomorphism
by the lemma. Consequently, the groups in E1(M) are trivial.
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[10] P. Ozsváth & Z. Szabó, Heegaard Floer homology and contact structures. Duke Math. J. 129(1): 39-61
(2005).
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