

MATH 461: Homework #6

Let (X, d) be a metric space. We say that (X, d) is *bounded* if the “largest” distance you can find between any two points is finite. More technically, we require the following to be finite:

$$\sup \{d(x, y) \mid x, y \in X\}$$

Recall that the supremum of a set in \mathbb{R} is the least upper bound of the set. This number is called the diameter of (X, d) and is denoted $\text{diam}(X, d)$. Being bounded says that for any two points $x, y \in X$ we have $0 \leq d(x, y) \leq \text{diam}(X, d)$.

1) Let (X, d) be any metric space. Prove that $D(x, y) = \min\{2, d(x, y)\}$ is also a metric for X . Is (X, D) a bounded metric space? If it is, what is its diameter?

2) Let (X_i, d_i) be a metric space for each $i \in \mathbb{N}$. Assume further that $\text{diam}(X_i, d_i) = M$ for all i . Show that

$$X = \prod_{i \in \mathbb{N}} X_i \quad d(\{x_i\}, \{y_i\}) = \sum_{i=1}^{\infty} \frac{d_i(x_i, y_i)}{2^i}$$

is a bounded metric space. What is its diameter?

3) A *pseudo-metric* space (X, p) is a set X and a function $p : X \times X \rightarrow \mathbb{R}$ such that

- (1) $p(x, y) \geq 0$
- (2) $p(x, y) = p(y, x)$
- (3) $p(x, z) \leq p(x, y) + p(y, z)$

In other words, like a metric space but without the condition that points must be a non-zero distance apart. You’ve already seen one of these: \mathbb{R}^2 with $p((x_1, x_2), (y_1, y_2)) = |x_1 - x_2|$.

Let (X, p) be a pseudo-metric space.

- a) Let $x, y \in X$ have $x \sim y$ if and only if $d(x, y) = 0$. Show that \sim is an equivalence relation on X .
- b) Let Y be the set of equivalence classes under this equivalence relation, and let $[x] \in Y$ be the x ’s equivalence class. Show that (Y, d) is a metric space, where $d([x], [y]) = p(x, y)$.

Note: If $x_i \rightarrow x$ in a pseudo-metric space, then $x_i \rightarrow y$ for every $y \in [x]$. That sequences can have more than one limit is a severe demerit and why pseudo-metric spaces aren’t all that useful in themselves. However, they are used, as in this exercise, as a stepping stone to obtaining a true metric space.