

MATH 461: Homework #27

One way to look at components in (X, \mathcal{T}) is to say $x \sim y$ if there is a connected subspace E_{xy} such that $x, y \in E_{xy}$. This is an equivalence relation whose equivalence classes are the components of X . (You should check this!).

To get at the question of when components are open, another equivalence relation has been defined. Let $x \approx y$ if there is no decomposition of $X = H \cup K$, with H, K disjoint, non-empty open sets, and $x \in H, y \in K$. Call an equivalence class under this relationship a “quasi-component”. Prove

- (1) \approx is an equivalence relation on X .
- (2) Let C_x be the component of x and Q_x be the quasi-component. Show that $C_x \subset Q_x$.
- (3) Suppose for $x \in X$, C_x is open, then $C_x = Q_x$.
- (4) Consider the subspace of \mathbb{R}^2 defined as the union of the lines $y = 0, y = 1$ and the rectangles with vertices at $(\pm n, \frac{1}{n})$ and $(\pm n, 1 - \frac{1}{n})$ for $n \geq 1$. Consider the point $(0, 1)$. Show that $C_{(0,1)}$ is the line $y = 1$, but that $Q_{(0,1)}$ also contains $\{y = 0\}$.