

MATH 461: Homework #25

- 1) Prove that a space (X, \mathcal{T}) is connected if and only if there are no surjective continuous maps $f : X \rightarrow \{0, 1\}$, where $\{0, 1\}$ has the discrete topology.
- 2) Which of the following subspaces of \mathbb{R}^2 are connected? path connected?
 - (1) $cl(B_1(-1, 0)) \cup cl(B_1(1, 0))$
 - (2) $cl(B_1(-1, 0)) \cup B_1(1, 0)$
 - (3) the rational comb: $\{(q, y) \in \mathbb{R}^2 \mid q \in \mathbb{Q}, y \in [0, 1]\} \cup ([0, 1] \times \{1\})$
 - (4) $\{(x, y) \mid x \text{ or } y \text{ is rational}\}$
- 3) Show that any infinite set, X , with the cofinite topology is connected. Is it path connected?