

MATH 461: Homework #19

Note: There was a mistake on HMWK 18. The question about 2^{nd} countable should assume that the map f is open. This has been corrected on the website.

In each of the following X is a topological space, and \sim is an equivalence relation on X . For \mathbb{R} , S^1 , \mathbb{R}^2 the usual topology is presumed. q is the map from X onto the set of equivalence classes, E , and \mathcal{Q} is the quotient topology of q on E . Describe (E, \mathcal{Q}) for each of the following equivalence relations:

- 1) $X = S^1$, which we will describe by angles $\theta \in [0, 2\pi)$. The equivalence classes are $\{0, \frac{2\pi}{3}, \frac{4\pi}{3}\}$ and $\{\theta\}$ for $\theta \neq 0, \frac{2\pi}{3}, \frac{4\pi}{3}$.
- 2) $X = \mathbb{R}^2$ and $x \sim y$ if and only if $d(x, (0, 0)) = d(y, (0, 0))$ for the unusual metric.
- 3) $X = S^1 \times [0, 1]$ with equivalence classes $\{(\theta, 1) | \theta \in S^1\}$ and $\{(\theta, r)\}$ if $r \neq 1$.
- 4) $X = \mathbb{R}$ and $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Show that E is uncountable. Show that $\mathcal{Q} = \{\emptyset, \mathbb{R}\}$.

Hint: consider the points in the equivalence class including 0 and the open sets containing this equivalence class.

Note that \mathbb{R} is T_4 , but $\{\emptyset, \mathbb{R}\}$ is not even T_0 . The T_i properties are not necessarily preserved under quotient maps.