

MATH 461: Homework #18

Let $f : (X, \mathcal{T}) \rightarrow Y$ and let \mathcal{Q} be the quotient topology on Y , i.e.

$$\mathcal{Q} = \{ O \subset Y \mid f^{-1}(O) \in \mathcal{T} \}$$

Prove the following about \mathcal{Q} :

- (1) (Y, \mathcal{Q}) is a topological space.
- (2) If (X, \mathcal{T}) is separable, so is (Y, \mathcal{Q}) .
- (3) If f is open and (X, \mathcal{T}) is 2^{nd} countable, so is (Y, \mathcal{Q}) .
- (4) A map $g : (Y, \mathcal{Q}) \rightarrow (Z, \mathcal{Z})$, where \mathcal{Z} is a topology on Z , is continuous if and only if $g \circ f : (X, \mathcal{T}) \rightarrow (Z, \mathcal{Z})$ is continuous.