

MATH 461: Homework #17

- 1) Prove the following:
 - (1) If (X, \mathcal{T}) is regular, and $S \subset X$, without restriction, then $(S, \mathcal{T}|_S)$ is also regular.
 - (2) Let (Y, \mathcal{T}) be a normal space. If $S \subset X$ is a *closed* subset, then $(S, \mathcal{T}|_S)$ is also normal. This argument is very similar to the preceding one, but there it worked for any subset. What goes wrong if you remove the restriction that S be closed?
- 2) Prove that the Sorgenfrey line, \mathbb{E} , is T_3 . Recall that \mathbb{E} is the space with set \mathbb{R} and topology generated by $\{ [a, b] \mid a, b \in \mathbb{R} \}$. (It is T_4 in fact, but that's harder to prove.)
- 3) Let $\mathbb{E} \times \mathbb{E}$ be the Sorgenfrey plane.
 - (1) Describe a base for the open sets.
 - (2) What is the subspace topology on $\{ (x, y) \mid x + y = 1 \}$.
 - (3) Is $\{ (x, y) \mid x + y = 1 \}$ closed in $\mathbb{E} \times \mathbb{E}$?
 - (4) Is $\mathbb{E} \times \mathbb{E}$ separable? 1st countable? 2nd countable? (look back at facts about subspaces and products).
 - (5) Is $\mathbb{E} \times \mathbb{E}$ normal? (use the lemma from class, and the preceding questions!)