

MATH 461: Homework #12

- 1) Let (X, \mathcal{T}_X) be a topological space. Let $A \subset X$ be any subset. Define $\mathcal{T}_A \subset \mathcal{P}(A)$ to be the collection $\{O \subset A \mid O = \mathcal{O} \cap A, \mathcal{O} \in \mathcal{T}_X\}$. Show that \mathcal{T}_A is a topology on A . Note that this works for *any* subset of X . A subset A equipped with this topology is called a *subspace* of X and the topology \mathcal{T}_A is called the *subspace topology*. If this seems familiar this is because in a previous homework you proved that if (X, d) is metric and $(A, d|_A)$ is the metric space found by restricting to A , then the metric topology on A is also the subspace topology.
- 2) Let (X, \mathcal{T}) have a subspace (A, \mathcal{T}_A) (again, A need not be open in X). Prove
 - a) If (X, \mathcal{T}) is 1st countable, so is (A, \mathcal{T}_A) .
 - b) If (X, \mathcal{T}) is 2nd countable, so is (A, \mathcal{T}_A) .
 - c) If (X, \mathcal{T}) is Hausdorff, so is (A, \mathcal{T}_A) . (Recall: Hausdorff (also: T_2) is the property that given any two distinct points x, y in X , there are *disjoint* open sets, O_1, O_2 , such that $x \in O_1$ and $y \in O_2$.)
- 3) Let \mathcal{S} be the set of all the lines in \mathbb{R}^2 , not necessarily through the origin. Describe the topology on \mathbb{R}^2 for which \mathcal{S} is a sub-basis.